pattern.GDM1 {clusterSim} | R Documentation |
An application of GDM1 distance for metric data to compute the distances of objects from the pattern object (upper or lower)
Description
An application of GDM1 distance for metric data to compute the distances of objects from the upper (ideal point co-ordinates) or lower (anti-ideal point co-ordinates) pattern object
Usage
pattern.GDM1(data, performanceVariable, scaleType="i",
nomOptValues=NULL, weightsType="equal", weights=NULL,
normalization="n0", patternType="upper",
patternCoordinates="dataBounds", patternManual=NULL,
nominalTransfMethod=NULL)
Arguments
data |
matrix or dataset |
performanceVariable |
vector containing three types of performance variables:
|
scaleType |
"i" - variables measured on interval scale, "r" - variables measured on ratio scale, "r/i" - vector with mixed variables |
nomOptValues |
vector containing optimal values for nominant variables and NA values for stimulants and destimulants. If |
weightsType |
equal or different1 or different2 "equal" - equal weights "different1" - vector of different weights should satisfy conditions: each weight takes value from interval [0; 1] and sum of weights equals one "different2" - vector of different weights should satisfy conditions: each weight takes value from interval [0; m] and sum of weights equals m (m - the number of variables) |
normalization |
normalization formulas as in |
weights |
vector of weights |
patternType |
"upper" - ideal point co-ordinates consists of the best variables' values "lower" - anti-ideal point co-ordinates consists of the worst variables' values |
patternCoordinates |
"dataBounds" - pattern should be calculated as following: "upper" pattern (maximum for stimulants, minimum for destimulants), "lower" pattern (minimum for stimulants, maximum for destimulants) "manual" - pattern should be given in |
patternManual |
Pattern co-ordinates contain: real numbers "min" - for minimal value of variable "max" - for maximal value of variable |
nominalTransfMethod |
method of transformation of nominant to stimulant variable: "q" - quotient transformation "d" - difference transformation |
Details
See file ../doc/patternGDM1_details.pdf for further details
Value
pdata |
raw (primary) data matrix |
tdata |
data matrix after transformation of nominant variables (with pattern in last row) |
data |
data matrix after normalization (with pattern in last row) |
distances |
GDM1 distances from pattern object |
sortedDistances |
sorted GDM1 distances from pattern object |
Author(s)
Marek Walesiak marek.walesiak@ue.wroc.pl, Andrzej Dudek andrzej.dudek@ue.wroc.pl
Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland
References
Jajuga, K., Walesiak, M., Bak, A. (2003), On the general distance measure, In: M. Schwaiger, O. Opitz (Eds.), Exploratory data analysis in empirical research, Springer-Verlag, Berlin, Heidelberg, 104-109. Available at: doi:10.1007/978-3-642-55721-7_12.
Walesiak, M. (1993), Statystyczna analiza wielowymiarowa w badaniach marketingowych [Multivariate statistical analysis in marketing research]. Wroclaw University of Economics, Research Papers no. 654.
Walesiak, M. (2006), Uogolniona miara odleglosci w statystycznej analizie wielowymiarowej [The Generalized Distance Measure in multivariate statistical analysis], Wydawnictwo AE, Wroclaw.
Walesiak, M. (2011), Uogólniona miara odległości GDM w statystycznej analizie wielowymiarowej z wykorzystaniem programu R [The Generalized Distance Measure GDM in multivariate statistical analysis with R], Wydawnictwo Uniwersytetu Ekonomicznego, Wroclaw.
Walesiak, M. (2016), Uogólniona miara odległości GDM w statystycznej analizie wielowymiarowej z wykorzystaniem programu R. Wydanie 2 poprawione i rozszerzone [The Generalized Distance Measure GDM in multivariate statistical analysis with R], Wydawnictwo Uniwersytetu Ekonomicznego, Wroclaw.
See Also
Examples
# Example 1
library(clusterSim)
data(data_patternGDM1)
res<-pattern.GDM1(data_patternGDM1,
performanceVariable=c("s","s","s","s","s","s","d","d","s","s"),
scaleType="r",nomOptValues=NULL,weightsType<-"equal",weights=NULL,
normalization<-"n4",patternType<-"lower",patternCoordinates<-"manual",
patternManual<-c("min","min","min","min","min","min","max","max","min","min"),
nominalTransfMethod <-NULL)
print(res)
gdm_p<-res$distances
plot(cbind(gdm_p,gdm_p),xlim=c(max(gdm_p),min(gdm_p)),
ylim=c(min(gdm_p),max(gdm_p)),xaxt="n",
xlab="Order of objects from the best to the worst",
ylab="GDM distances from pattern object", lwd=1.6)
axis(1, at=gdm_p,labels=names(gdm_p), cex.axis=0.5)
# Example 2
library(clusterSim)
data(data_patternGDM1)
res<-pattern.GDM1(data_patternGDM1,
performanceVariable=c("s","s","s","s","s","s","d","d","s","s"),
scaleType="r",nomOptValues=NULL,weightsType<-"equal",weights=NULL,
normalization<-"n2",patternType<-"upper",
patternCoordinates<-"dataBounds",patternManual<-NULL,
nominalTransfMethod<-NULL)
print(res)
gdm_p<-res$distances
plot(cbind(gdm_p,gdm_p),xlim=c(min(gdm_p),max(gdm_p)),
ylim=c(min(gdm_p),max(gdm_p)),xaxt="n",
xlab="Order of objects from the best to the worst",
ylab="GDM distances from pattern object", lwd=1.6)
axis(1, at=gdm_p,labels=names(gdm_p), cex.axis=0.5)
# Example 3
library(clusterSim)
data(data_patternGDM1)
res<-pattern.GDM1(data_patternGDM1,
performanceVariable=c("s","s","s","s","s","s","d","d","s","s"),
scaleType="r",nomOptValues=NULL,weightsType<-"different2",
weights=c(1.1,1.15,1.15,1.1,1.1,0.7,0.7,1.2,0.8,1.0),
normalization<-"n6",patternType<-"upper",patternCoordinates<-"manual",
patternManual<-c(100,100,100,100,100,"max","min","min","max","max"),
nominalTransfMethod <-NULL)
print(res)
gdm_p<-res$distances
plot(cbind(gdm_p,gdm_p),xlim=c(min(gdm_p),max(gdm_p)),
ylim=c(min(gdm_p),max(gdm_p)),xaxt="n",
xlab="Order of objects from the best to the worst",
ylab="GDM distances from pattern object", lwd=1.6)
axis(1, at=gdm_p,labels=names(gdm_p), cex.axis=0.5)