index.KL {clusterSim} | R Documentation |
Calculates Krzanowski-Lai index
Description
Calculates Krzanowski-Lai index
Usage
index.KL (x,clall,d=NULL,centrotypes="centroids")
Arguments
x |
data |
clall |
Three vectors of integers indicating the cluster to which each object is allocated in partition of n objects into u-1, u, and u+1 clusters |
d |
optional distance matrix, used for calculations if centrotypes="medoids" |
centrotypes |
"centroids" or "medoids" |
Details
See file ../doc/indexKL_details.pdf for further details
Value
Krzanowski-Lai index
Author(s)
Marek Walesiak marek.walesiak@ue.wroc.pl, Andrzej Dudek andrzej.dudek@ue.wroc.pl
Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland
References
Krzanowski, W.J., Lai, Y.T. (1988), A criterion for determining the number of groups in a data set using sum of squares clustering, "Biometrics", 44, 23-34.
Milligan, G.W., Cooper, M.C. (1985), An examination of procedures of determining the number of cluster in a data set, "Psychometrika", vol. 50, no. 2, 159-179. Available at: doi:10.1007/BF02294245.
Tibshirani, R., Walther, G., Hastie, T. (2001), Estimating the number of clusters in a data set via the gap statistic, "Journal of the Royal Statistical Society", ser. B, vol. 63, part 2, 411-423. Available at: doi:10.1111/1467-9868.00293.
See Also
index.G1
, index.G2
, index.G3
, index.C
,
index.S
, index.H
, index.Gap
, index.DB
Examples
# Example 1
library(clusterSim)
data(data_ratio)
cl1<-pam(data_ratio,4)
cl2<-pam(data_ratio,5)
cl3<-pam(data_ratio,6)
clall<-cbind(cl1$clustering,cl2$clustering,cl3$clustering)
index.KL(data_ratio,clall)
# Example 2
library(clusterSim)
data(data_ratio)
md <- dist(data_ratio, method="manhattan")
# nc - number_of_clusters
min_nc=2
max_nc=15
res <- array(0, c(max_nc-min_nc+1, 2))
res[,1] <- min_nc:max_nc
clusters <- NULL
for (nc in min_nc:max_nc)
{
if(nc-1==1){
clustering1<-rep(1,nrow(data_ratio))
}
else{
clustering1 <- pam(md, nc-1, diss=TRUE)$clustering
}
clustering2 <- pam(md, nc, diss=TRUE)$clustering
clustering3 <- pam(md, nc+1, diss=TRUE)$clustering
clall<- cbind(clustering1, clustering2, clustering3)
res[nc-min_nc+1,2] <- KL <- index.KL(data_ratio,clall,centrotypes="centroids")
clusters <- rbind(clusters, clustering2)
}
print(paste("max KL for",(min_nc:max_nc)[which.max(res[,2])],"clusters=",max(res[,2])))
print("clustering for max KL")
print(clusters[which.max(res[,2]),])
#write.table(res,file="KL_res.csv",sep=";",dec=",",row.names=TRUE,col.names=FALSE)
plot(res,type="p",pch=0,xlab="Number of clusters",ylab="KL",xaxt="n")
axis(1, c(min_nc:max_nc))
# Example 3
library(clusterSim)
data(data_ratio)
md <- dist(data_ratio, method="manhattan")
# nc - number_of_clusters
min_nc=2
max_nc=15
res <- array(0, c(max_nc-min_nc+1, 2))
res[,1] <- min_nc:max_nc
clusters <- NULL
for (nc in min_nc:max_nc)
{
if(nc-1==1){
clustering1<-rep(1,nrow(data_ratio))
}
else{
clustering1 <- pam(md, nc-1, diss=TRUE)$clustering
}
clustering2 <- pam(md, nc, diss=TRUE)$clustering
clustering3 <- pam(md, nc+1, diss=TRUE)$clustering
clall<- cbind(clustering1, clustering2, clustering3)
res[nc-min_nc+1,2] <- KL <- index.KL(data_ratio,clall,d=md,centrotypes="medoids")
clusters <- rbind(clusters, clustering2)
}
print(paste("max KL for",(min_nc:max_nc)[which.max(res[,2])],"clusters=",max(res[,2])))
print("clustering for max KL")
print(clusters[which.max(res[,2]),])
#write.table(res,file="KL_res.csv",sep=";",dec=",",row.names=TRUE,col.names=FALSE)
plot(res,type="p",pch=0,xlab="Number of clusters",ylab="KL",xaxt="n")
axis(1, c(min_nc:max_nc))