index.Gap {clusterSim} | R Documentation |
Calculates Tibshirani, Walther and Hastie gap index
Description
Calculates Tibshirani, Walther and Hastie gap index
Usage
index.Gap (x, clall, reference.distribution="unif", B=10,
method="pam",d=NULL,centrotypes="centroids")
Arguments
x |
data |
clall |
Two vectors of integers indicating the cluster to which each object is allocated in partition of n objects into u, and u+1 clusters |
reference.distribution |
"unif" - generate each reference variable uniformly over the range of the observed values for that variable
or
"pc" - generate the reference variables from a uniform distribution over a box aligned with the principal components of the data. In detail, if |
B |
the number of simulations used to compute the gap statistic |
method |
the cluster analysis method to be used. This should be one of: "ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median", "centroid", "pam", "k-means","diana" |
d |
optional distance matrix, used for calculations if centrotypes="medoids" |
centrotypes |
"centroids" or "medoids" |
Details
See file ../doc/indexGap_details.pdf for further details
Thanks to dr Michael P. Fay from National Institute of Allergy and Infectious Diseases for finding "one column error".
Value
Gap |
Tibshirani, Walther and Hastie gap index for u clusters |
diffu |
necessary value for choosing correct number of clusters via gap statistic Gap(u)-[Gap(u+1)-s(u+1)] |
Author(s)
Marek Walesiak marek.walesiak@ue.wroc.pl, Andrzej Dudek andrzej.dudek@ue.wroc.pl
Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland
References
Tibshirani, R., Walther, G., Hastie, T. (2001), Estimating the number of clusters in a data set via the gap statistic, "Journal of the Royal Statistical Society", ser. B, vol. 63, part 2, 411-423. Available at: doi:10.1111/1467-9868.00293.
See Also
index.G1
, index.G2
, index.G3
, index.C
,
index.S
, index.H
, index.KL
, index.DB
Examples
# Example 1
library(clusterSim)
data(data_ratio)
cl1<-pam(data_ratio,4)
cl2<-pam(data_ratio,5)
clall<-cbind(cl1$clustering,cl2$clustering)
g<-index.Gap(data_ratio, clall, reference.distribution="unif", B=10,
method="pam")
print(g)
# Example 2
library(clusterSim)
means <- matrix(c(0,2,4,0,3,6), 3, 2)
cov <- matrix(c(1,-0.9,-0.9,1), 2, 2)
x <- cluster.Gen(numObjects=40, means=means, cov=cov, model=2)
x <- x$data
md <- dist(x, method="euclidean")^2
# nc - number_of_clusters
min_nc=1
max_nc=5
min <- 0
clopt <- NULL
res <- array(0, c(max_nc-min_nc+1, 2))
res[,1] <- min_nc:max_nc
found <- FALSE
for (nc in min_nc:max_nc){
cl1 <- pam(md, nc, diss=TRUE)
cl2 <- pam(md, nc+1, diss=TRUE)
clall <- cbind(cl1$clustering, cl2$clustering)
gap <- index.Gap(x,clall,B=20,method="pam",centrotypes="centroids")
res[nc-min_nc+1, 2] <- diffu <- gap$diffu
if ((res[nc-min_nc+1, 2] >=0) && (!found)){
nc1 <- nc
min <- diffu
clopt <- cl1$cluster
found <- TRUE
}
}
if (found){
print(paste("Minimal nc where diffu>=0 is",nc1,"for diffu=",round(min,4)),quote=FALSE)
}else{
print("I have not found clustering with diffu>=0", quote=FALSE)
}
plot(res,type="p",pch=0,xlab="Number of clusters",ylab="diffu",xaxt="n")
abline(h=0, untf=FALSE)
axis(1, c(min_nc:max_nc))
# Example 3
library(clusterSim)
means <- matrix(c(0,2,4,0,3,6), 3, 2)
cov <- matrix(c(1,-0.9,-0.9,1), 2, 2)
x <- cluster.Gen(numObjects=40, means=means, cov=cov, model=2)
x <- x$data
md <- dist(x, method="euclidean")^2
# nc - number_of_clusters
min_nc=1
max_nc=5
min <- 0
clopt <- NULL
res <- array(0, c(max_nc-min_nc+1, 2))
res[,1] <- min_nc:max_nc
found <- FALSE
for (nc in min_nc:max_nc){
cl1 <- pam(md, nc, diss=TRUE)
cl2 <- pam(md, nc+1, diss=TRUE)
clall <- cbind(cl1$clustering, cl2$clustering)
gap <- index.Gap(x,clall,B=20,method="pam",d=md,centrotypes="medoids")
res[nc-min_nc+1, 2] <- diffu <- gap$diffu
if ((res[nc-min_nc+1, 2] >=0) && (!found)){
nc1 <- nc
min <- diffu
clopt <- cl1$cluster
found <- TRUE
}
}
if (found){
print(paste("Minimal nc where diffu>=0 is",nc1,"for diffu=",round(min,4)),quote=FALSE)
}else{
print("I have not found clustering with diffu>=0",quote=FALSE)
}
plot(res, type="p", pch=0, xlab="Number of clusters", ylab="diffu", xaxt="n")
abline(h=0, untf=FALSE)
axis(1, c(min_nc:max_nc))