data_patternGDM1 {clusterSim} | R Documentation |
Metric data with 17 objects and 10 variables (8 stimulant variables, 2 destimulant variables)
Description
Metric data with 17 objects and 10 variables (8 stimulant variables, 2 destimulant variables)
Data on the Polish voivodships, owing to the conditions of the population living in cities in 2007. The analysis includes the following variables:
x1 - dwellings in per cent fitted with water-line system,
x2 - dwellings in per cent fitted with lavatory,
x3 - dwellings in per cent fitted with bathroom,
x4 - dwellings in per cent fitted with gas-line system,
x5 - dwellings in per cent fitted with central heating,
x6 - average number of rooms per dwelling,
x7 - average number of persons per dwelling,
x8 - average number of persons per room,
x9 - usable floor space in square meter per dwelling,
x10 - usable floor space in square meter per person.
Types of performance variables:
x1 - x6, x9, x10 - stimulants,
x7, x8 - destimulants.
Format
data.frame: 17 objects, 10 variables
Source
Voivodships Statistical Yearbook, Poland 2008.
Examples
# Example 1
library(clusterSim)
data(data_patternGDM1)
res<-pattern.GDM1(data_patternGDM1,
performanceVariable=c("s","s","s","s","s","s","d","d","s","s"),
scaleType="r",nomOptValues=NULL,weightsType<-"equal",weights=NULL,
normalization<-"n4",patternType<-"lower",patternCoordinates<-"manual",
patternManual<-c(0,0,0,0,0,"min","max","max","min","min"),
nominalTransfMethod <-NULL)
print(res)
gdm_p<-res$distances
plot(cbind(gdm_p,gdm_p),xlim=c(max(gdm_p),min(gdm_p)),
ylim=c(min(gdm_p),max(gdm_p)),xaxt="n",
xlab="Order of objects from the best to the worst",
ylab="GDM distances from pattern object",lwd=1.6)
axis(1, at=gdm_p,labels=names(gdm_p), cex.axis=0.5)
# Example 2
library(clusterSim)
data(data_patternGDM1)
res<-pattern.GDM1(data_patternGDM1,
performanceVariable=c("s","s","s","s","s","s","d","d","s","s"),
scaleType="r",nomOptValues=NULL,weightsType<-"equal",weights=NULL,
normalization<-"n2",patternType<-"upper",
patternCoordinates<-"dataBounds",patternManual<-NULL,
nominalTransfMethod <-NULL)
print(res)
gdm_p<-res$distances
plot(cbind(gdm_p,gdm_p),xlim=c(min(gdm_p),max(gdm_p)),
ylim=c(min(gdm_p),max(gdm_p)),xaxt="n",
xlab="Order of objects from the best to the worst",
ylab="GDM distances from pattern object", lwd=1.6)
axis(1, at=gdm_p,labels=names(gdm_p), cex.axis=0.5)