cluster.wild.plm {clusterSEs} | R Documentation |
Wild Cluster Bootstrapped p-Values For PLM
Description
This software estimates p-values using wild cluster bootstrapped t-statistics for fixed effects panel linear models (Cameron, Gelbach, and Miller 2008). Residuals are repeatedly re-sampled by cluster to form a pseudo-dependent variable, a model is estimated for each re-sampled data set, and inference is based on the sampling distribution of the pivotal (t) statistic. The null is never imposed for PLM models.
Usage
cluster.wild.plm(
mod,
dat,
cluster,
ci.level = 0.95,
boot.reps = 1000,
report = TRUE,
prog.bar = TRUE,
output.replicates = FALSE,
seed = NULL
)
Arguments
mod |
A "within" model estimated using |
dat |
The data set used to estimate |
cluster |
Clustering dimension ("group", the default, or "time"). |
ci.level |
What confidence level should CIs reflect? (Note: only reported when |
boot.reps |
The number of bootstrap samples to draw. |
report |
Should a table of results be printed to the console? |
prog.bar |
Show a progress bar of the bootstrap (= TRUE) or not (= FALSE). |
output.replicates |
Should the cluster bootstrap coefficient replicates be output (= TRUE) or not (= FALSE)? |
seed |
Random number seed for replicability (default is NULL). |
Value
A list with the elements
p.values |
A matrix of the estimated p-values. |
ci |
A matrix of confidence intervals (if null not imposed). |
Author(s)
Justin Esarey
References
Esarey, Justin, and Andrew Menger. 2017. "Practical and Effective Approaches to Dealing with Clustered Data." Political Science Research and Methods forthcoming: 1-35. <URL:http://jee3.web.rice.edu/cluster-paper.pdf>.
Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller. 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors." The Review of Economics and Statistics 90(3): 414-427. <DOI:10.1162/rest.90.3.414>.
Examples
## Not run:
# predict employment levels, cluster on group
require(plm)
data(EmplUK)
emp.1 <- plm(emp ~ wage + log(capital+1), data = EmplUK, model = "within",
index=c("firm", "year"))
cluster.wild.plm(mod=emp.1, dat=EmplUK, cluster="group", ci.level = 0.95,
boot.reps = 1000, report = TRUE, prog.bar = TRUE)
# cluster on time
cluster.wild.plm(mod=emp.1, dat=EmplUK, cluster="time", ci.level = 0.95,
boot.reps = 1000, report = TRUE, prog.bar = TRUE)
## End(Not run)