cluster.bs.glm {clusterSEs} | R Documentation |
Pairs Cluster Bootstrapped p-Values For GLM
Description
This software estimates p-values using pairs cluster bootstrapped t-statistics for GLM models (Cameron, Gelbach, and Miller 2008). The data set is repeatedly re-sampled by cluster, a model is estimated, and inference is based on the sampling distribution of the pivotal (t) statistic.
Usage
cluster.bs.glm(
mod,
dat,
cluster,
ci.level = 0.95,
boot.reps = 1000,
stratify = FALSE,
cluster.se = TRUE,
report = TRUE,
prog.bar = TRUE,
output.replicates = FALSE,
seed = NULL
)
Arguments
mod |
A model estimated using |
dat |
The data set used to estimate |
cluster |
A formula of the clustering variable. |
ci.level |
What confidence level should CIs reflect? |
boot.reps |
The number of bootstrap samples to draw. |
stratify |
Sample clusters only (= FALSE) or clusters and observations by cluster (= TRUE). |
cluster.se |
Use clustered standard errors (= TRUE) or ordinary SEs (= FALSE) for bootstrap replicates. |
report |
Should a table of results be printed to the console? |
prog.bar |
Show a progress bar of the bootstrap (= TRUE) or not (= FALSE). |
output.replicates |
Should the cluster bootstrap coefficient replicates be output (= TRUE) or not (= FALSE)? |
seed |
Random number seed for replicability (default is NULL). |
Value
A list with the elements
p.values |
A matrix of the estimated p-values. |
ci |
A matrix of confidence intervals. |
replicates |
Optional: A matrix of the coefficient estimates from each cluster bootstrap replicate. |
Note
Code to estimate GLM clustered standard errors by Mahmood Arai: http://thetarzan.wordpress.com/2011/06/11/clustered-standard-errors-in-r/. Cluster SE degrees of freedom correction = (M/(M-1)) with M = the number of clusters.
Author(s)
Justin Esarey
References
Esarey, Justin, and Andrew Menger. 2017. "Practical and Effective Approaches to Dealing with Clustered Data." Political Science Research and Methods forthcoming: 1-35. <URL:http://jee3.web.rice.edu/cluster-paper.pdf>.
Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller. 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors." The Review of Economics and Statistics 90(3): 414-427. <DOI:10.1162/rest.90.3.414>.
Examples
## Not run:
##################################################################
# example one: predict whether respondent has a university degree
##################################################################
require(effects)
data(WVS)
logit.model <- glm(degree ~ religion + gender + age, data=WVS, family=binomial(link="logit"))
summary(logit.model)
# compute pairs cluster bootstrapped p-values
clust.bs.p <- cluster.bs.glm(logit.model, WVS, ~ country, report = T)
######################################
# example two: predict chicken weight
######################################
rm(list=ls())
data(ChickWeight)
dum <- model.matrix(~ ChickWeight$Diet)
ChickWeight$Diet2 <- as.numeric(dum[,2])
ChickWeight$Diet3 <- as.numeric(dum[,3])
ChickWeight$Diet4 <- as.numeric(dum[,4])
weight.mod2 <- glm(formula = weight~Diet2+Diet3+Diet4+log(Time+1),data=ChickWeight)
# compute pairs cluster bootstrapped p-values
clust.bs.w <- cluster.bs.glm(weight.mod2, ChickWeight, ~ Chick, report = T)
###################################################################
# example three: murder rate by U.S. state, with interaction term
###################################################################
rm(list=ls())
require(datasets)
state.x77.dat <- data.frame(state.x77)
state.x77.dat$Region <- state.region
state.x77.dat$IncomeXHS <- state.x77.dat$Income * state.x77.dat$HS.Grad
income.mod <- glm( Murder ~ Income + HS.Grad + IncomeXHS , data=state.x77.dat)
# compute pairs cluster bootstrapped p-values
clust.bs.inc <- cluster.bs.glm(income.mod, state.x77.dat, ~ Region,
report = T, output.replicates=T, boot.reps=10000)
# compute effect of income on murder rate, by percentage of HS graduates
# using conventional standard errors
HS.grad.vec <- seq(from=38, to=67, by=1)
me.income <- coefficients(income.mod)[2] + coefficients(income.mod)[4]*HS.grad.vec
plot(me.income ~ HS.grad.vec, type="l", ylim=c(-0.0125, 0.0125),
xlab="% HS graduates", ylab="ME of income on murder rate")
se.income <- sqrt( vcov(income.mod)[2,2] + vcov(income.mod)[4,4]*(HS.grad.vec)^2 +
2*vcov(income.mod)[2,4]*HS.grad.vec )
ci.h <- me.income + qt(0.975, lower.tail=T, df=46) * se.income
ci.l <- me.income - qt(0.975, lower.tail=T, df=46) * se.income
lines(ci.h ~ HS.grad.vec, lty=2)
lines(ci.l ~ HS.grad.vec, lty=2)
# use pairs cluster bootstrap to compute CIs, including bootstrap bias-correction factor
# including bootstrap bias correction factor
# cluster on Region
################################################
# marginal effect replicates =
me.boot <- matrix(data = clust.bs.inc$replicates[,2], nrow=10000, ncol=30, byrow=F) +
as.matrix(clust.bs.inc$replicates[,4]) %*% t(HS.grad.vec)
# compute bias-corrected MEs
me.income.bias.cor <- 2*me.income - apply(X=me.boot, FUN=mean, MARGIN=2)
# adjust bootstrap replicates for bias
me.boot.bias.cor <- me.boot + matrix(data = 2*(me.income -
apply(X=me.boot, FUN=mean, MARGIN=2)),
ncol=30, nrow=10000, byrow=T)
# compute pairs cluster bootstrap 95% CIs, including bias correction
me.boot.plot <- apply(X = me.boot.bias.cor, FUN=quantile, MARGIN=2, probs=c(0.025, 0.975))
# plot bootstrap bias-corrected marginal effects
lines(me.income.bias.cor ~ HS.grad.vec, lwd=2)
# plot 95% Cis
# a little lowess smoothing applied to compensate for discontinuities
# arising from shifting between replicates
lines(lowess(me.boot.plot[1,] ~ HS.grad.vec), lwd=2, lty=2)
lines(lowess(me.boot.plot[2,] ~ HS.grad.vec), lwd=2, lty=2)
# finishing touches to plot
legend(lty=c(1,2,1,2), lwd=c(1,1,2,2), "topleft",
legend=c("Model Marginal Effect", "Conventional 95% CI",
"BS Bias-Corrected Marginal Effect", "Cluster Bootstrap 95% CI"))
## End(Not run)