getLambda {clusterHD} | R Documentation |
select lambda based on AIC or BIC
Description
Select the regularization parameter for HTK-means clustering based on information criteria.
Usage
getLambda(HTKmeans.out, type = "AIC")
Arguments
HTKmeans.out |
the output of a call to |
type |
either |
Details
This function selects the best lambda (based on information
criteria AIC or BIC) out of the HTKmeans.out$inputargs$lambdas
sequence of values.
Value
The selected value for lambda
Author(s)
J. Raymaekers and R.H. Zamar
References
Raymaekers, Jakob, and Ruben H. Zamar. "Regularized K-means through hard-thresholding." arXiv preprint arXiv:2010.00950 (2020).
See Also
Examples
X <- mclust::banknote
y <- as.numeric(as.factor(X[, 1]))
lambdas <- seq(0, 1, by = 0.01)
X <- X[, -1]
HTKmeans.out <- HTKmeans(X, 2, lambdas)
# Both AIC and BIC suggest a lambda of 0.02 here:
getLambda(HTKmeans.out, "AIC")
getLambda(HTKmeans.out, "BIC")
[Package clusterHD version 1.0.2 Index]