viewClusters {clusterGeneration} | R Documentation |
PLOT ALL CLUSTERS IN A 2-D PROJECTION SPACE
Description
Plot all clusters in a 2-D projection space.
Usage
viewClusters(
y,
cl,
outlierLabel = 0,
projMethod = "Eigen",
xlim = NULL,
ylim = NULL,
xlab = "1st projection direction",
ylab = "2nd projection direction",
title = "Scatter plot of 2-D Projected Clusters",
font = 2,
font.lab = 2,
cex = 1.2,
cex.lab = 1.2)
Arguments
y |
Data matrix. Rows correspond to observations. Columns correspond to variables. |
cl |
Cluster membership vector. |
outlierLabel |
Label for outliers. Outliers are not involved in calculating the projection
directions. Outliers will be represented by red triangles in the plot.
By default, |
projMethod |
Method to construct 2-D projection directions.
|
xlim |
Range of X axis. |
ylim |
Range of Y axis. |
xlab |
X axis label. |
ylab |
Y axis label. |
title |
Title of the plot. |
font |
An integer which specifies which font to use for text (see |
font.lab |
The font to be used for x and y labels (see |
cex |
A numerical value giving the amount by which plotting text
and symbols should be scaled relative to the default (see |
cex.lab |
The magnification to be used for x and y labels relative
to the current setting of 'cex' (see |
Value
B |
Between cluster distance matrix measuring the between cluster variation. |
Q |
Columns of |
proj |
Projected clusters in the 2-D space spanned by the first 2 columns of
the matrix |
Author(s)
Weiliang Qiu weiliang.qiu@gmail.com
Harry Joe harry@stat.ubc.ca
References
Dhillon I. S., Modha, D. S. and Spangler, W. S. (2002) Class visualization of high-dimensional data with applications. computational Statistics and Data Analysis, 41, 59–90.
Qiu, W.-L. and Joe, H. (2006) Separation Index and Partial Membership for Clustering. Computational Statistics and Data Analysis, 50, 585–603.
See Also
plot1DProjection
plot2DProjection
Examples
n1 <- 50
mu1 <- c(0, 0)
Sigma1 <- matrix(c(2, 1, 1, 5), 2, 2)
n2 <- 100
mu2 <- c(10, 0)
Sigma2 <- matrix(c(5, -1, -1, 2), 2, 2)
n3 <- 30
mu3 <- c(10, 10)
Sigma3 <- matrix(c(3, 1.5, 1.5, 1), 2, 2)
n4 <- 10
mu4 <- c(0, 0)
Sigma4 <- 50*diag(2)
library(MASS)
set.seed(1234)
y1 <- mvrnorm(n1, mu1, Sigma1)
y2 <- mvrnorm(n2, mu2, Sigma2)
y3 <- mvrnorm(n3, mu3, Sigma3)
y4 <- mvrnorm(n4, mu4, Sigma4)
y <- rbind(y1, y2, y3, y4)
cl <- rep(c(1:3, 0), c(n1, n2, n3, n4))
par(mfrow=c(2,1))
viewClusters(y = y, cl = cl)
viewClusters(y = y, cl = cl, projMethod = "DMS")