| airline.distances.1966 {cluster.datasets} | R Documentation | 
Hartigan (1975) Airline Distance Between Principal Cities of the World
Description
The table contains the airline distances in hunds of miles between the principal cities of the world. This is Table 11.1 in Chapter 11 of Hartigan (1975) on page 192.
Usage
data(airline.distances.1966)Format
A data frame with 30 observations on the following 31 variables.
- code
- a character vector for the cities 
- AZ
- a numeric vector for Azores 
- BD
- a numeric vector for Baghdad 
- BN
- a numeric vector for Berlin 
- BY
- a numeric vector for Bombay 
- BS
- a numeric vector for Buenos Aires 
- CO
- a numeric vector for Cairo 
- CN
- a numeric vector for Capetown 
- CH
- a numeric vector for Chicago 
- GM
- a numeric vector for Guam 
- HU
- a numeric vector for Honolulu 
- IL
- a numeric vector for Istanbul 
- JU
- a numeric vector for Juneau 
- LN
- a numeric vector for London 
- MA
- a numeric vector for Manila 
- ME
- a numeric vector for Melbourne 
- MY
- a numeric vector for Mexico City 
- ML
- a numeric vector for Montreal 
- MW
- a numeric vector for Moscow 
- NS
- a numeric vector for New Orleans 
- NY
- a numeric vector for New York 
- PY
- a numeric vector for Panama City 
- PS
- a numeric vector for Paris 
- RO
- a numeric vector for Rio De Janeiro 
- RE
- a numeric vector for Rome 
- SF
- a numeric vector for San Francisco 
- SO
- a numeric vector for Santiago 
- SE
- a numeric vector for Seattle 
- SI
- a numeric vector for Shanghai 
- SY
- a numeric vector for Sydney 
- TO
- a numeric vector for Tokyo 
Details
Hartigan uses this data set with the single linkage algorithm.
Source
The World Almanac (1966).
SPAETH2 Cluster Analysis Datasets http://people.sc.fsu.edu/~jburkardt/datasets/spaeth2/spaeth2.html
References
Hartigan, J. A. (1975). Clustering Algorithms, John Wiley, New York.
Examples
data(airline.distances.1966)