validation_kproto {clustMixType}R Documentation

Validating k Prototypes Clustering

Description

Calculating the preferred validation index for a k-Prototypes clustering with k clusters or computing the optimal number of clusters based on the choosen index for k-Prototype clustering. Possible validation indices are: cindex, dunn, gamma, gplus, mcclain, ptbiserial, silhouette and tau.

Usage

validation_kproto(
  method = "silhouette",
  object = NULL,
  data = NULL,
  type = "huang",
  k = NULL,
  lambda = NULL,
  kp_obj = "optimal",
  verbose = FALSE,
  ...
)

Arguments

method

Character specifying the validation index: cindex, dunn, gamma, gplus, mcclain, ptbiserial, silhouette (default) or tau.

object

Object of class kproto resulting from a call with kproto(..., keep.data=TRUE).

data

Original data; only required if object == NULL and neglected if object != NULL.

type

Character, to specify the distance for clustering; either "huang" or "gower".

k

Vector specifying the search range for optimum number of clusters; if NULL the range will set as 2:sqrt(n). Only required if object == NULL and neglected if object != NULL.

lambda

Factor to trade off between Euclidean distance of numeric variables and simple matching coefficient between categorical variables.

kp_obj

character either "optimal" or "all": Output of the index-optimal clustering (kp_obj == "optimal") or all computed cluster partitions (kp_obj == "all"); only required if object != NULL.

verbose

Logical, whether additional information about process should be printed.

...

Further arguments passed to kproto, like:

  • nstart: If > 1 repetitive computations of kproto with random initializations are computed.

  • na.rm: Character, either "yes" to strip NA values for complete case analysis, "no" to keep and ignore NA values, "imp.internal" to impute the NAs within the algorithm or "imp.onestep" to apply the algorithm ignoring the NAs and impute them after the partition is determined.

Details

More information about the implemented validation indices:

Value

For computing the optimal number of clusters based on the choosen validation index for k-Prototype clustering the output contains:

k_opt

optimal number of clusters (sampled in case of ambiguity)

index_opt

index value of the index optimal clustering

indices

calculated indices for k=2,...,k_{max}

kp_obj

if(kp_obj == "optimal") the kproto object of the index optimal clustering and if(kp_obj == "all") all kproto which were calculated

For computing the index-value for a given k-Prototype clustering the output contains:

index

calculated index-value

Author(s)

Rabea Aschenbruck

References

Examples

## Not run: 
# generate toy data with factors and numerics
n   <- 10
prb <- 0.99
muk <- 2.5 

x1 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x1 <- c(x1, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x1 <- as.factor(x1)
x2 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x2 <- c(x2, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x2 <- as.factor(x2)
x3 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))
x4 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))
x <- data.frame(x1,x2,x3,x4)


# calculate optimal number of cluster, index values and clusterpartition with Silhouette-index
val <- validation_kproto(method = "silhouette", data = x, k = 3:5, nstart = 5)


# apply k-prototypes
kpres <- kproto(x, 4, keep.data = TRUE)

# calculate cindex-value for the given clusterpartition
cindex_value <- validation_kproto(method = "cindex", object = kpres)

## End(Not run)


[Package clustMixType version 0.4-2 Index]