clusEvol {clusEvol} | R Documentation |
clusEvol
Description
clusEvol is a function that allows us to use exploratory what if
questions in the sense that the present information of an object is plugged-in a dataset in a previous time frame so that we can explore its evolution (and of its neighbours) to the present.
Usage
clusEvol(x=NULL,objects=NULL, time = NULL,target.vars = NULL,
time.base=NULL,sel.obj=NULL,init = NULL,logscale = FALSE,
ng = NULL,clm = "pam",scale=TRUE,clstats = FALSE,...)
Arguments
x |
Dataframe. panel data input. |
objects |
Character; variable name of objects. |
time |
Character; variable name of time . |
target.vars |
Character; selected variables for Cluster Evolution Analytics (CEA). |
time.base |
Numeric; selected time for CEA. |
sel.obj |
Character; selected object for CEA. |
init |
Numeric; initiation time. |
logscale |
Logical; TRUE if data should be logscaled. |
ng |
Numeric; number of desired clusters. |
clm |
Character; (pam,kmeans,choose). |
scale |
Logical; TRUE if data is scaled in clm. |
clstats |
Logical; TRUE if cluster statistics should be returned. |
... |
Parameters used in 'clm' method. |
Details
clusEvol can be synthetized has the following steps
- Identify clusters to which sel.obj
is similar in time.base
- The data of sel.obj
in time.base
is plugged-in in each time period.
- Clusters are generated in each time period with data from sel.obj
in time.base
.
Value
Returns an object of class clusEvol
.
An object of class clusEvol
is a list containing
at most the following components:
datos |
clean input data; |
target.vars |
selected variables; |
results |
data frame of negighbours of sel.obj; |
ECk |
clusters that |
ECkTot |
all clusters that |
Clus |
dataframe objects, cluster and time. |
sumdat |
summary statistics of |
kmodelSol |
output of clustering algorithm in each iteration. |
clusterStats |
cluster statistics in each clustering. |
sl |
evolution in time with |
sel |
input variable names of objects in time. |
sel.obj |
input chatarcher of selected object. |
Author(s)
Víctor Morales Oñate, victor.morales@uv.cl, https://sites.google.com/site/moralesonatevictor/,https://www.linkedin.com/in/vmoralesonate/ Bolívar Morales Oñate, bmoralesonate@gmail.com, https://sites.google.com/site/moralesonatevictor/
References
Morales-Oñate, V., and Morales-Oñate, B. (2024). Cluster Evolution Analytics. https://mpra.ub.uni-muenchen.de/120220/
Examples
library(clusEvol)
data(actpas)
solclusEvol <- clusEvol(x=actpas,objects="razon_social",
time = "fecha",target.vars = c("montoAct","operAct"),
time.base=max(actpas$fecha),
sel.obj="BANCO SOLIDARIO S.A.",init = min(actpas$fecha),
logscale = TRUE,ng = 5,clm = "pam")
print(solclusEvol)