fisher.sim {clrng} | R Documentation |
fisher.sim
Description
Performs Monte carlo's simulation for Fisher's exact test on GPU.
Usage
fisher.sim(
x,
N,
streams,
Nglobal = getOption("clrng.Nglobal"),
type = getOption("clrng.type"),
returnStatistics = FALSE,
verbose = FALSE
)
Arguments
x |
a vclMatrix of integers. |
N |
an integer specifying number of replicates. |
streams |
a vclMatrix of streams. Default using streams with package default initial seeds. |
Nglobal |
a (non-empty) integer vector specifying size of the index space on GPU for use, with default value from global option 'clrng.Nglobal'. |
type |
a character string specifying "double" or "float" of the returned test statistics, with default value from global option 'clrng.type'. |
returnStatistics |
a logical value, if TRUE, return test statistics, default is FALSE. |
verbose |
a logical value, if TRUE, print extra information, default is FALSE. |
Value
a ‘htest’ object of p-value and actual number of replicates and a list of test statistics, streams used, threshold.
Examples
library('clrng')
if (detectGPUs() >= 1) {
setContext(grep("gpu", listContexts()$device_type)[1])
Job <- matrix(c(1,2,1,0, 3,3,6,1, 10,10,14,9, 6,7,12,11), 4, 4)
Job <- gpuR::vclMatrix(Job, type="integer")
getOption('clrng.type')
options(clrng.Nglobal = c(64,16))
streams <- createStreamsGpu()
result <- fisher.sim(Job, 1e5, streams = streams)
print(result)
result$streams
result$threshold
} else {
message("No GPU context available")
}
[Package clrng version 0.0.5 Index]