sim.rord {clordr} | R Documentation |
Simulation of Replciations of Spatial Ordinal Data
Description
sim.rord
Simulate replications of spatial ordinal data
Usage
sim.rord(
n.subject,
n.site,
n.rep = 100,
midalpha,
beta,
phi,
sigma2,
covar,
location
)
Arguments
n.subject |
number of subjects. |
n.site |
number of spatial sites for each subject. |
n.rep |
number of simulation. Parameter inputs include: |
midalpha |
cutoff parameter (excluding -Inf and +Inf); |
beta |
regression coefficient; |
phi |
dependence parameter for spatial dependence; and |
sigma2 |
sigma^2 (variance) for the spatial dependence. |
covar |
regression (design) matrix, including intercepts. |
location |
a matrix contains spatial location of sites within each subject. |
Value
sim.rord
returns a list (length n.rep
) of matrix (n.subject*n.site
) with the underlying parameter as inputs.
Examples
set.seed(1203)
n.subject <- 100
n.lat <- n.lon <- 10
n.site <- n.lat*n.lon
beta <- c(1,2,-1) # First 1 here is the intercept
midalpha <- c(1.15, 2.18) ; phi <- 0.8 ; sigma2 <- 0.7
true <- c(midalpha,beta,sigma2,phi)
Xi <- rnorm(n.subject,0,1) ; Xj <- rbinom(n.site,1,0.6)
VV <- matrix(NA, nrow = n.subject*n.site, ncol = 3)
for(i in 1:n.subject){ for(j in 1:n.site){
VV[(i-1)*n.site+j,] <- c(1,Xi[i],Xj[j])
}
}
location <- cbind(rep(seq(1,n.lat,length=n.lat),n.lat),rep(1:n.lon, each=n.lon))
sim.data <- sim.rord(n.subject, n.site, n.rep = 2, midalpha, beta, phi, sigma2, covar=VV, location)
length(sim.data)
head(sim.data[[1]])
dim(sim.data[[1]])
hist(sim.data[[1]])
[Package clordr version 1.7.0 Index]