cl.rord {clordr} | R Documentation |
Composite Likelihood Calculation for Replciations of Spatial Ordinal Data (for illustration)
Description
cl.rord
Calculate the negative composite log-likelihood value for replications of spatial ordinal data at given value of parameter value.
Note that this function is not directly used in cle.rord
but illustration only.
Usage
cl.rord(theta, response, covar, location, radius = 4)
Arguments
theta |
a vector of parameter value |
response |
a matrix of observation (row: spatial site and column: subject). |
covar |
regression (design) matrix, including intercepts. |
location |
a matrix contains spatial location of sites within each subject |
radius |
radius for selecting pairs for the composite likelihood estimation. |
Value
cl.rord
returns a list: negative composite log-likelihood, a vector of first-order partial derivatives for theta
.
Examples
set.seed(1203)
n.subject <- 10
n.lat <- n.lon <- 10
n.site <- n.lat*n.lon
beta <- c(1,2,-1) # First 1 here is the intercept
midalpha <- c(1.15, 2.18) ; sigma2 <- 0.7 ; phi <- 0.8
true = c(midalpha,beta,sigma2,phi)
Xi = rnorm(n.subject,0,1) ; Xj <- rbinom(n.site,1,0.6)
VV <- matrix(NA, nrow = n.subject*n.site, ncol = 3)
for(i in 1:n.subject){ for(j in 1:n.site){
VV[(i-1)*n.site+j,] <- c(1,Xi[i],Xj[j])
}
}
location = cbind(rep(seq(1,n.lat,length=n.lat),n.lat),rep(1:n.lon, each=n.lon))
sim.data <- sim.rord(n.subject, n.site, n.rep = 2, midalpha, beta, sigma2, phi, covar=VV, location)
cl.rord(theta=true,response=sim.data[[1]], covar=VV, location, radius = 4)
[Package clordr version 1.7.0 Index]