cv.clogitLasso {clogitLasso} | R Documentation |
Cross-validation of clogitLasso
object
Description
Cross-validation of clogitLasso
object
Usage
cv.clogitLasso(objclogitLasso, K = 10, gpe = NULL)
Arguments
objclogitLasso |
An objet of type |
K |
The number of folds used in cross validation |
gpe |
A list of group defined by the user. |
Value
An object of type cv.clogitLasso
with the following components:
lambda |
Vector of regularisation parameter |
mean_cv |
vector of mean deviances for each value of the regularisation parameter |
beta |
Vector of estimated coefficients with optimal regularisation parameter |
lambdaopt |
Optimal regularisation parameter |
Author(s)
Marta Avalos, Helene Pouyes, Marius Kwemou and Binbin Xu
References
Avalos, M., Pouyes, H., Grandvalet, Y., Orriols, L., & Lagarde, E. (2015). Sparse conditional logistic regression for analyzing large-scale matched data from epidemiological studies: a simple algorithm. BMC bioinformatics, 16(6), S1. doi: 10.1186/1471-2105-16-S6-S1.
Examples
## Not run:
# generate data
y <- rep(c(1,0), 100)
X <- matrix (rnorm(20000, 0, 1), ncol = 100) # pure noise
strata <- sort(rep(1:100, 2))
# fitLasso <- clogitLasso(X,y,strata,log=TRUE)
# Cross validation
cv.fit <- cv.clogitLasso(fitLasso)
## End(Not run)
[Package clogitLasso version 1.1 Index]