summary.emaxsimB {clinDR} | R Documentation |
Summary of output of emaxsimB
Description
Detailed summary of repeated sampling properties of Bayesian Emax estimation and comparison with simple pairwise comparisons.
Usage
## S3 method for class 'emaxsimB'
summary(object, testalpha = 0.05,
clev = c('0.9','0.95','0.8'),
seSim = FALSE, ...)
Arguments
object |
Output of |
testalpha |
Alpha level for a one-sided MCP-MOD trend test. |
clev |
Posterior proabilities for reported intervals |
seSim |
If |
... |
Other unspecified parameters (none currently utilized) |
Details
For pairwise comparisons, the 'most favorable pairwise comparison' means the dose with the best difference versus placebo is compared to the population mean response for the selected dose, thus the target value for coverage, bias, and RMSE changes depending on the selected dose.
Value
The function produces annotated output summarizing the properties of the estimation procedures. The summaries are also returned as an invisible list for extracting results.
Author(s)
Neal Thomas
See Also
emaxsim
, print.emaxsim
,
plot.emaxsim
Examples
## Not run:
## emaxsimB changes the random number seed
nsim<-50
idmax<-5
doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)
Ndose<-length(doselev)
### population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-2.464592
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop<-c(log(ed50),emax,e0)
meanlev<-emaxfun(doselev,pop)
###FixedMean is specialized constructor function for emaxsim
gen<-FixedMean(n,doselev,meanlev,sdy)
prior<-emaxPrior.control(epmu=0,epsca=30,difTargetmu=0,
difTargetsca=30,dTarget=100,p50=50,sigmalow=0.1,
sigmaup=30,parmDF=5)
mcmc<-mcmc.control(chains=1,warmup=500,iter=5000,seed=53453,propInit=0.15,adapt_delta = 0.95)
D1 <- emaxsimB(nsim,gen, prior, modType=3,mcmc=mcmc,check=FALSE)
summary(D1,testalph=0.05,clev='0.95')
## End(Not run)