print.emaxsimB {clinDR} | R Documentation |
Print simulation output from emaxsimB
Description
Prints key summary variables of Emax estimation peformance for each simulation. Can be used to identify simulated data sets yielding unusual estimates.
Usage
## S3 method for class 'emaxsimB'
print(x,
nprint = min(nsim, 20),
id = x$idmax,
digits = 3, ...)
Arguments
x |
Output of |
nprint |
Number of simulations to print. If a vector of
length 2, |
id |
Output includes the stdBias for the dose with index |
digits |
Number of decimal digits to print for Z and p-values |
... |
Other print parameters (none currently implemented) |
Value
Printed output returned as invisible matrix.
Note
The stdBias printed is the difference between the posterior mean of the
dose response at the dose with index id
and its population
value. The difference is divided by the SE (posterior SD).
Author(s)
Neal Thomas
See Also
emaxsimB
, summary.emaxsimB
,
plot.emaxsimB
Examples
## Not run:
## emaxsimB changes the random number seed
nsim<-50
idmax<-5
doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)
Ndose<-length(doselev)
### population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-2.464592
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop<-c(log(ed50),emax,e0)
meanlev<-emaxfun(doselev,pop)
###FixedMean is specialized constructor function for emaxsim
gen<-FixedMean(n,doselev,meanlev,sdy)
prior<-emaxPrior.control(epmu=0,epsca=30,difTargetmu=0,
difTargetsca=30,dTarget=100,p50=50,sigmalow=0.1,
sigmaup=30,parmDF=5)
mcmc<-mcmc.control(chains=1,warmup=500,iter=5000,seed=53453,propInit=0.15,adapt_delta = 0.95)
D1 <- emaxsimB(nsim,gen, prior, modType=3,mcmc=mcmc,check=FALSE)
print(D1)
## End(Not run)
[Package clinDR version 2.4.1 Index]