| predict.emaxsimBobj {clinDR} | R Documentation | 
Mean response estimates (posterior means) and SE (posterior SD) for specified doses for a simulated emaxsimBobj object
Description
Estimated mean and standard error for specified doses (posterior means and SD) computed from the output of a simulated data set created by function emaxsimB. Also returns mean difference with placebo and their standard errors.
Usage
## S3 method for class 'emaxsimBobj'
predict(object, 
                dose, dref=0, clev=0.9, 
                ...)
Arguments
| object | Output of the extract function [] applied to an object
createad by  | 
| dose | Vector (can be a single value) of doses where dose response curve is to be evaluated. | 
| dref | A reference dose (0 by default) for contrasts, but other values can be specified. If specified, a single reference value must be given. | 
| clev | Specified probablity of the posterior interval | 
| ... | Optional arguments are not used. | 
Value
A list containing:
| pred | Vector with mean dose response estimates for each specified dose. | 
| fitdif | Corresponding differences with placebo. | 
| se |  SEs (posterior SD) for  | 
| sedif | SEs (posterior SD) for  | 
| lb,ub,lbdif,ubdif | Bounds of  | 
Author(s)
Neal Thomas
See Also
emaxsim, summary.emaxsim,
predict.emaxsim 
Examples
## Not run: 
### emaxsimB changes the random number seed
nsim<-50
doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)
Ndose<-length(doselev)
### population parameters for simulation
e0<-2.465375 
ed50<-67.481113 
dtarget<-100
diftarget<-2.464592
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop<-c(log(ed50),emax,e0)    
meanlev<-emaxfun(doselev,pop)  
###FixedMean is specialized constructor function for emaxsim
gen<-FixedMean(n,doselev,meanlev,sdy)  
prior<-emaxPrior.control(epmu=0,epsca=30,difTargetmu=0,
		difTargetsca=30,dTarget=100,p50=50,sigmalow=0.1,
		sigmaup=30,parmDF=5)
mcmc<-mcmc.control(chains=1,warmup=500,iter=5000,seed=53453,propInit=0.15,adapt_delta = 0.95)
D1 <- emaxsimB(nsim,gen, prior, modType=3,mcmc=mcmc,check=FALSE)
predict(D1[1],dose=c(75,125))
## End(Not run)