predict.emaxsim {clinDR} | R Documentation |
Mean response and SE for specified doses for each replicate data set in an emaxsim object
Description
Estimated mean/proportion and standard error for each simulated data set in an emaxsim object. Also returns mean difference with placebo and their standard errors.
Usage
## S3 method for class 'emaxsim'
predict(object,
dose, dref=0, ...)
Arguments
object |
Output of |
dose |
Vector (can be a single value) of doses where dose response curve is to be evaluated. |
dref |
A reference dose (0 by default) for contrasts, but other values can be specified. If specified, a single reference value must be given. |
... |
Optional arguments are not used. |
Value
A list containing:
fitpredv |
Matrix with mean dose response estimate for each simulated data set. Number of columns is the number of doses specified. |
fitdifv |
Matrix with mean dose response estimate minus mean placebo response for each simulated data set. Number of columns is the number of doses specified. |
sepredv |
Matrix of SEs for |
sedifv |
Matrix of SEs for |
Author(s)
Neal Thomas
See Also
emaxsim
, summary.emaxsim
,
plot.emaxsim
Examples
## Not run:
## random number seed changed by this example
nsim<-50
idmax<-5
doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)
### population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-9.032497
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop.parm<-c(log(ed50),emax,e0)
meanlev<-emaxfun(doselev,pop.parm)
###FixedMean is specialized constructor function for emaxsim
gen.parm<-FixedMean(n,doselev,meanlev,sdy)
D1 <- emaxsim(nsim,gen.parm)
predout<-predict(D1,c(75,150))
## End(Not run)