nllogis {clinDR} | R Documentation |
The negative log likelihood function for a 3- or 4- parameter Emax model on the logit scale for binary dose response.
Description
The negative log likelihood function evaluated with a single input set of
parameters for the binary Emax model on the logistic scale. For use
with function fitEmax
Usage
nllogis(parms,y,dose,
prot=rep(1,length(y)),
count=rep(1,length(y)),
xbase=NULL)
Arguments
parms |
Emax model parameter values. The order of the variables is (log(ED50),Emax,E0) or (log(ED50),lambda,Emax,E0). There must be an E0 for each protocol. Note the transformation of ED50. |
y |
Binary outcome variable for each patient. Missing values are deleted. Must be coded 0/1. |
dose |
Dose for each patient |
prot |
Protocol (group) membership used to create multiple intercepts.
The default is a single protocol. The value of |
count |
Counts for the number of patients with each dose/y value. Default is 1 (ungrouped data). |
xbase |
Optional matrix of baseline covariates that enter the model linearly. If there is a single covariate, it should be converted to a matrix with one column. |
Details
The negative log likelihood for the 3- or 4- Emax
model on the logit scale for binary data. Note the ordering of the parameters
and their transformations. A 3 vs 4 parameter model is deterimined by
the length of parms
.
Value
Negative log likelihood value is returned.
Author(s)
Neal Thomas
See Also
Examples
data('metaData')
exdat<-metaData[metaData$taid==8,]
cy<-round(exdat$sampsize*exdat$rslt)
y<-c(rep(1,length(cy)),rep(0,length(cy)))
cy<-c(cy,exdat$sampsize-cy)
drep<-c(exdat$dose,exdat$dose)
plotD(exdat$rslt,exdat$dose,se=FALSE)
nllogis(parms=c(log(2.5),-3.26,-0.15), y, drep,count=cy)