bpchkMonoEmax {clinDR} | R Documentation |
Bayes posterior predictive test for Emax (monotone) model fit
Description
Bayes posterior predictive test for an Emax (monotone) model
fit comparing the best response from lower doses to
the response from the highest dose. checkMonoEmax
is deprecated.
See bpchkMonoEmax
.
Usage
bpchkMonoEmax(x, trend='positive', protSel=1)
Arguments
x |
Output object of class 'fitEmaxB'. |
trend |
The default is 'positive', so high values for lower doses
yield small Bayesian predictive probabilities. Set |
protSel |
The test is applied to the data from a single protocol.
The protocol can be selected if the model was fit to data from more
than one protocol. The |
Details
The Bayesian predictive p-value is the posterior probability that a dose group sample mean in a new study with the same sample sizes would yield a higher (or lower for negative trend) difference for one of the lower doses versus the highest dose than was actually obtained from the real sample. There must be at least two non-placebo dose groups (NA returned otherwise). Placebo response is excluded from the comparisons.
The function generates random numbers, so the random number generator/seed must be set before the function is called for exact reproducibility.
When fitEmaxB
is applied to first-stage fitted model output with a
non-diagonal variance-covariance matrix, the predictive draws are selected
from a multivariate model with means computed from the MCMC-generated
parameters and input asymptotic variance-covariance matrix vcest
.
If the fitted model was applied to binary data, the GOF statistic is
computed based on the logit rather than observed dose group sample
proportion scale. This differs from the setting with patient-level
data input to fitEmaxB
.
Value
Returns a scalar Bayesian predictive p-value.
Author(s)
Neal Thomas
References
Thomas, N., Sweeney, K., and Somayaji, V. (2014). Meta-analysis of clinical dose response in a large drug development portfolio, Statistics in Biopharmaceutical Research, Vol. 6, No.4, 302-317. <doi:10.1080/19466315.2014.924876>
Thomas, N., and Roy, D. (2016). Analysis of clinical dose-response in small-molecule drug development: 2009-2014. Statistics in Biopharmaceutical Research, Vol. 6, No.4, 302-317 <doi:10.1080/19466315.2016.1256229>
Wu, J., Banerjee, A., Jin, B. Menon, M. S., Martin, S. and Heatherington, A. (2017). Clinical dose response for a broad set of biological products: A model-based meta-analysis. Statistical Methods in Medical Research. <doi:10.1177/0962280216684528>
See Also
plot.plotB
, plotD
, plot.fitEmax
Examples
## Not run:
data("metaData")
exdat<-metaData[metaData$taid==6 & metaData$poptype==1,]
prior<-emaxPrior.control(epmu=0,epsca=10,difTargetmu=0,difTargetsca=10,dTarget=80.0,
p50=3.75,sigmalow=0.01,sigmaup=20)
mcmc<-mcmc.control(chains=3)
msSat<-sum((exdat$sampsize-1)*(exdat$sd)^2)/(sum(exdat$sampsize)-length(exdat$sampsize))
fitout<-fitEmaxB(exdat$rslt,exdat$dose,prior,modType=4,
count=exdat$sampsize,msSat=msSat,mcmc=mcmc)
parms<-coef(fitout)[,1:4] #use first intercept
checkMonoEmax(fitout, trend='negative')
## End(Not run)