SeEmax {clinDR} | R Documentation |
Asymptotic SE for dose response estimates from a 3- or 4- parameter Emax model
Description
Compute the asymptotic SE for dose response estimates based on the asymptotic variance-covariance matrix from the fit of a 3- or 4-parameter Emax model
Usage
SeEmax(fit, doselev, modType, dref=0, nbase=0, x=NULL,
binary=FALSE, clev=0.9)
Arguments
fit |
Output of |
doselev |
SEs are evaluated at vector of doses |
modType |
modType=3,4 for a 3 or 4 parameter model. |
dref |
A reference dose (0 by default) for contrasts, but other values can be specified. If specified, a single reference value must be given. |
nbase |
The number of baseline predictors included in the model. |
x |
The model is evaluated at baseline covariate values, |
binary |
Emax model on logistic scale, then backtransformed. |
clev |
Confidence level for intervals. |
Details
The Emax models supported by SeEmax
should now be fit using
fitEmax
and predict.fitEmax
. SeEmax
remains available
primarily for backward compatibility.
SeEmax
can be used with models that allow different placebo response
for multiple protocols by selecting the intercept for a specific protocol.
Coeficients for baseline covariates can also be included following the intercept.
The variance-covariance matrix from the full model must be subsetted to match
the included coeficients (i.e., the rows and columns corresponding to the
omitted intercepts must be removed). List input must be used for the more
general models.
Value
Returns a list:
doselev |
Doses to evaluate |
dref |
Differences in response between |
fitpred |
Estimated dose response at doselev |
sepred |
SE for estimated dose responses |
fitdif |
Estimated response at doselev minus estimated response at placebo |
sedif |
SE for fitdif estimated differences |
fitref |
Estimated dose response at the reference dose. |
seref |
SE for the estimated dose response at the reference dose |
covref |
The covariance between each estimated response and the estimated response at the reference dose. These covariances can be used to compute asymptotic variances of differences after back-transformation (e.g., for logistic regression with binary data). |
Author(s)
Neal Thomas
References
Bates, D. M. and Watts, D. G. (1988) Nonlinear Regression Analysis and Its Applications, Wiley
See Also
fitEmax
Examples
## Not run:
## this example changes the random number seed
doselev<-c(0,5,25,50,100,250)
n<-c(78,81,81,81,77,80)
dose<-rep(doselev,n)
### population parameters for simulation
e0<-2.465375
ed50<-67.481113
led50<-log(ed50)
lambda=1.8
dtarget<-100
diftarget<-9.032497
emax<-solveEmax(diftarget,dtarget,log(ed50),lambda,e0)
sdy<-7.967897
pop<-c(led50=led50,lambda=lambda,emax=emax,e0=e0)
meanresp<-emaxfun(dose,pop)
y<-rnorm(sum(n),meanresp,sdy)
nls.fit<-nls(y ~ e0 + (emax * dose^lambda)/(dose^lambda + exp(led50*lambda)),
start = pop, control = nls.control(
maxiter = 100),trace=TRUE,na.action=na.omit)
SeEmax(nls.fit,doselev=c(60,120),modType=4)
SeEmax(list(coef(nls.fit),vcov(nls.fit)),c(60,120),modType=4)
## End(Not run)