FixedMean {clinDR} | R Documentation |
Fixed means (proportions) random data constructor for emaxsim for continuous or binary data
Description
Creates a list object that contains inputs and a function to create simulated data sets with a common mean (proportion) for use in emaxsim with normal or continuous data
Usage
FixedMean(n, doselev, meanlev, resSD, parm = NULL, binary=FALSE)
Arguments
n |
Sample size for each dose group |
doselev |
Dose levels (including 0 for placebo) in the
study corresponding to |
meanlev |
Mean response at each doselev. For binary data, these are the proportion of responders (no logit transformation). |
resSD |
Standard deviation for residuals within each dose group (assumed common to all dose groups) |
parm |
Population parameters that are
saved for later reference, but are not used when creating simulated
data. |
binary |
Normal data with homogeneous variance are generated unless
|
Value
A list of length 2
.
The first element is itself a list named genP
that contains named elments
n
, resSD
, doselev
, dose
, parm
,
binary
, and the
element meanlev
, which is specific to FixedMean
. The second
element is a function named genFun
that takes
genP
as input and returns a list with named elements meanlev
,
parm
, resSD
, y
.
Author(s)
Neal Thomas
See Also
Examples
## Not run:
## example changes the random number seed
doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)
### population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-9.032497
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop<-c(log(ed50),emax,e0)
meanlev<-emaxfun(doselev,pop)
###FixedMean is specialized constructor function for emaxsim
genp<-FixedMean(n,doselev,meanlev,sdy,pop)
### binary example
n<-rep(500,5)
doselev<-c(0,5,25,50,1000)
dose<-rep(doselev,n)
e0<- qlogis(0.2)
ed50<-20
diftarget<-qlogis(0.6)-qlogis(0.2)
lambda<-2
dtarget<-100
emax<-solveEmax(diftarget,dtarget,log(ed50),lambda,e0)
pop<-c(log(ed50),lambda,emax,e0)
meanlev<-plogis(emaxfun(doselev,pop))
genp<-FixedMean(n,doselev,meanlev,sdy,pop,binary=TRUE)
tapply(genp$genFun(genp$genP)$y,dose,mean)
meanlev
## End(Not run)