"Extract.emaxsim" {clinDR} | R Documentation |
Extract a simulation from the output of emaxsim
Description
Extract a simulated data set from the output of emaxsim. Data are re-created using the stored random number seed.
Usage
## S3 method for class 'emaxsim'
x[i, ...]
Arguments
x |
Output object from |
i |
Simulation replication to extract |
... |
Parameters passed to other functions (none currently) |
Details
Re-creates the ith simulated data set for subsequent analyses. Also returns all
analyses done for the ith data set in emaxsim
Value
A list is returned with class(emaxsimobj) containing:
y |
Response vector |
dose |
Doses corresponding to |
pop |
Population parameters; type of parameter depends on constructor function generating study data. |
popSD |
Vector containing the population SD used to generate
continuous data. |
init |
Starting Emax parameters |
est4 |
4-parmameter Emax fit (ed50,lambda,emax,e0). NA if failed to converge or 3-parameter model requested. |
est3 |
3-parmameter Emax fit (ed50,emax,e0). NA if failed to converge or 4-parameter model successfully fit. |
estA |
Alternative parameter estimates. NA if Emax model fit successfully |
vc |
The variance-covariance matrix of the model parameters for the selected model. |
residSD |
The residual SD based on the selected model. |
bigC |
bigC= TRUE if the primary fit (from modType) yielded an ED50 > ED50 upper limit. |
negC |
negC= TRUE if the primary fit (from modType) yielded a negative ED50 estimate< ED50 lower limit |
modType |
When modType=4, the fitting begins with the 4 parameter model. If estimation fails or modType=3, the 3-parameter estimation is applied. If it fails, a best-fitting model linear in its parameters is selected. |
fit |
Output of model determined by fitType |
fitType |
Character vector with "4", "3", "L", "LL", or "E" for 4-Emax, 3-Emax, linear, log-linear, or exponential when an alternative model is selected. |
ed50cutoff |
Upper allowed limit for ED50 estimates. |
ed50lowcutoff |
Lower allowed limit for the ED50 estimates. |
switchMod |
If switchMod is TRUE, the algorithm substitutes a simpler model if (1) convergence is not achieved, (2) the information matrix is not positive definite at the converged values, (3) the ED50 estimates are outside the cutoff bounds. If switchMod is F, only conditions (1) or (2) cause a simpler model to be used. |
PL |
T if the 'plinear' algorithm in nls converged |
predpop |
Population means for each dose group |
dm |
Vector containing dose group means |
dsd |
Vector containing dose group SDs |
fitpred |
Dose groups means estimated from the model |
sepred |
SEs for estimates in fitpred |
sedif |
SEs for model-based estimates of difference with placebo |
pVal , selContrast |
P-value and contrast selected from MCP-MOD test |
idmax |
Index of default dose group for comparison to placebo |
Note
Extraction from a simulation object requires re-creation of the simulated data set. If the extracted object is to be used more than once, it is more efficient to save the extracted object than reuse [].
Author(s)
Neal Thomas
See Also
emaxsim
, print.emaxsimobj
,
plot.emaxsimobj
, update.emaxsimobj
Examples
## Not run:
## code change random number seed
nsim<-50
idmax<-5
doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)
### population parameters for simulation
e0<-2.465375
ed50<-67.481113
dtarget<-100
diftarget<-9.032497
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop<-c(log(ed50),emax,e0)
meanlev<-emaxfun(doselev,pop)
###FixedMean is specialized constructor function for emaxsim
gen.parm<-FixedMean(n,doselev,meanlev,sdy)
D1 <- emaxsim(nsim,gen.parm,modType=3)
e49<-D1[49] #### extract 49th simulation
## End(Not run)