aemet_forecast_daily {climaemet} | R Documentation |
Forecast database by municipality
Description
Get a database of daily or hourly weather forecasts for a given municipality.
Usage
aemet_forecast_daily(
x,
verbose = FALSE,
extract_metadata = FALSE,
progress = TRUE
)
aemet_forecast_hourly(
x,
verbose = FALSE,
extract_metadata = FALSE,
progress = TRUE
)
Arguments
x |
A vector of municipality codes to extract. For convenience,
climaemet provides this data on the dataset aemet_munic
(see |
verbose |
Logical |
extract_metadata |
Logical |
progress |
Logical, display a |
Details
Forecasts format provided by the AEMET API have a complex structure.
Although climaemet returns a tibble
, each
forecasted value is provided as a nested tibble
.
aemet_forecast_tidy()
helper function can unnest these values an provide a
single unnested tibble
for the requested variable.
If extract_metadata = TRUE
a simple tibble
describing
the value of each field of the forecast is returned.
Value
A nested tibble
. Forecasted values can be
extracted with aemet_forecast_tidy()
. See also Details.
API Key
You need to set your API Key globally using aemet_api_key()
.
See Also
aemet_munic for municipality codes and mapSpain package for
working with sf
objects of municipalities (see
mapSpain::esp_get_munic()
and Examples).
Other aemet_api_data:
aemet_beaches()
,
aemet_daily_clim()
,
aemet_extremes_clim()
,
aemet_forecast_beaches()
,
aemet_last_obs()
,
aemet_monthly
,
aemet_normal
,
aemet_stations()
Other forecasts:
aemet_forecast_beaches()
,
aemet_forecast_tidy()
Examples
# Select a city
data("aemet_munic")
library(dplyr)
munis <- aemet_munic %>%
filter(municipio_nombre %in% c("Santiago de Compostela", "Lugo")) %>%
pull(municipio)
daily <- aemet_forecast_daily(munis)
# Metadata
meta <- aemet_forecast_daily(munis, extract_metadata = TRUE)
glimpse(meta$campos)
# Vars available
aemet_forecast_vars_available(daily)
# This is nested
daily %>%
select(municipio, fecha, nombre, temperatura)
# Select and unnest
daily_temp <- aemet_forecast_tidy(daily, "temperatura")
# This is not
daily_temp
# Wrangle and plot
daily_temp_end <- daily_temp %>%
select(
elaborado, fecha, municipio, nombre, temperatura_minima,
temperatura_maxima
) %>%
tidyr::pivot_longer(cols = contains("temperatura"))
# Plot
library(ggplot2)
ggplot(daily_temp_end) +
geom_line(aes(fecha, value, color = name)) +
facet_wrap(~nombre, ncol = 1) +
scale_color_manual(
values = c("red", "blue"),
labels = c("max", "min")
) +
scale_x_date(
labels = scales::label_date_short(),
breaks = "day"
) +
scale_y_continuous(
labels = scales::label_comma(suffix = "ยบ")
) +
theme_minimal() +
labs(
x = "", y = "",
color = "",
title = "Forecast: 7-day temperature",
subtitle = paste(
"Forecast produced on",
format(daily_temp_end$elaborado[1], usetz = TRUE)
)
)
# Spatial with mapSpain
library(mapSpain)
library(sf)
lugo_sf <- esp_get_munic(munic = "Lugo") %>%
select(LAU_CODE)
daily_temp_end_lugo_sf <- daily_temp_end %>%
filter(nombre == "Lugo" & name == "temperatura_maxima") %>%
# Join by LAU_CODE
left_join(lugo_sf, by = c("municipio" = "LAU_CODE")) %>%
st_as_sf()
ggplot(daily_temp_end_lugo_sf) +
geom_sf(aes(fill = value)) +
facet_wrap(~fecha) +
scale_fill_gradientn(
colors = c("blue", "red"),
guide = guide_legend()
) +
labs(
main = "Forecast: 7-day max temperature",
subtitle = "Lugo, ES"
)