splot2 {clikcorr} | R Documentation |
Graphical function 2 for visualizing bivariate censored and/or missing data.
Description
Generates scatter plot for bivariate data with different types of censoring and missing.
Usage
splot2(data, lower1, upper1, lower2, upper2, pch = 21, bg = "cyan",
xlab = lower1, ylab = lower2, ...)
Arguments
data |
a data frame name. |
lower1 |
the lower bound name in the data frame of the first of the two variables for whose pairwise correlation to be calculated. |
upper1 |
the upper bound name in the data frame of the first of the two variables for whose pairwise correlation to be calculated. |
lower2 |
the lower bound name in the data frame of the second of the two variables for whose pairwise correlation to be calculated. |
upper2 |
the upper bound name in the data frame of the second of the two variables for whose pairwise correlation to be calculated. |
pch |
point character. |
bg |
point background color. |
xlab |
x axis label. |
ylab |
y axis label. |
... |
not used. |
Details
Generates scatter plot for bivariate data with different types of censoring and missing.
Author(s)
Yanming Li, Kerby Shedden, Brenda W. Gillespie and John A. Gillespie.
References
Yanming Li, Kerby Shedden, Brenda W. Gillespie and John A. Gillespie (2016). Calculating Profile Likelihood Estimates of the Correlation Coefficient in the Presence of Left, Right or Interval Censoring and Missing Data.
Examples
data(ND)
logND <- log(ND)
splot2(logND, "t1_OCDD", "t2_OCDD", "t1_HxCDF_234678",
"t2_HxCDF_234678", xlab="OCDD", ylab="HxCDF234678")
x <- logND[which(!is.na(logND[,14]) & !is.na(logND[,15])),14]
y <- logND[which(!is.na(logND[,26]) & !is.na(logND[,27])),26]
xhist = hist(x, plot=FALSE, breaks=10)
yhist = hist(y, plot=FALSE, breaks=10)
zones=matrix(c(2,0,1,3), ncol=2, byrow=TRUE)
layout(zones, widths=c(5/6,1/6), heights=c(1/6,5/6))
top = max(c(xhist$counts, yhist$counts))
par(mar=c(5,5,1,1))
splot2(logND, "t1_OCDD", "t2_OCDD", "t1_HxCDF_234678",
"t2_HxCDF_234678", xlab="OCDD", ylab="HxCDF234678", cex=1.5)
par(mar=c(0,6,2,4))
barplot(xhist$counts, axes=FALSE, ylim=c(0, max(xhist$counts)), space=0)
par(mar=c(6,0,4,2))
barplot(yhist$counts, axes=FALSE, xlim=c(0, max(yhist$counts)), space=0, horiz=TRUE)