clifford-package {clifford} | R Documentation |
Arbitrary Dimensional Clifford Algebras
Description
A suite of routines for Clifford algebras, using the 'Map' class of the Standard Template Library. Canonical reference: Hestenes (1987, ISBN 90-277-1673-0, "Clifford algebra to geometric calculus"). Special cases including Lorentz transforms, quaternion multiplication, and Grassman algebra, are discussed. Conformal geometric algebra theory is implemented. Uses 'disordR' discipline.
Details
The DESCRIPTION file:
Package: | clifford |
Type: | Package |
Title: | Arbitrary Dimensional Clifford Algebras |
Version: | 1.0-8 |
Authors@R: | person(given=c("Robin", "K. S."), family="Hankin", role = c("aut","cre"), email="hankin.robin@gmail.com", comment = c(ORCID = "0000-0001-5982-0415")) |
Maintainer: | Robin K. S. Hankin <hankin.robin@gmail.com> |
Description: | A suite of routines for Clifford algebras, using the 'Map' class of the Standard Template Library. Canonical reference: Hestenes (1987, ISBN 90-277-1673-0, "Clifford algebra to geometric calculus"). Special cases including Lorentz transforms, quaternion multiplication, and Grassman algebra, are discussed. Conformal geometric algebra theory is implemented. Uses 'disordR' discipline. |
License: | GPL (>= 2) |
Suggests: | knitr,rmarkdown,testthat,onion,lorentz |
VignetteBuilder: | knitr |
Imports: | Rcpp (>= 0.12.5),mathjaxr,disordR (>= 0.0-8), magrittr, methods, partitions (>= 1.10-4) |
LinkingTo: | Rcpp,BH |
SystemRequirements: | C++11 |
URL: | https://github.com/RobinHankin/clifford |
BugReports: | https://github.com/RobinHankin/clifford/issues |
RdMacros: | mathjaxr |
Author: | Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>) |
Index of help topics:
Ops.clifford Arithmetic Ops Group Methods for 'clifford' objects [.clifford Extract or Replace Parts of a clifford allcliff Clifford object containing all possible terms antivector Antivectors or pseudovectors as.vector Coerce a clifford vector to a numeric vector cartan Cartan map between clifford algebras clifford Create, coerce, and test for 'clifford' objects clifford-package Arbitrary Dimensional Clifford Algebras const The constant term of a Clifford object drop Drop redundant information even Even and odd clifford objects grade The grade of a clifford object homog Homogenous Clifford objects horner Horner's method involution Clifford involutions lowlevel Low-level helper functions for 'clifford' objects magnitude Magnitude of a clifford object minus Take the negative of a vector numeric_to_clifford Coercion from numeric to Clifford form print.clifford Print clifford objects quaternion Quaternions using Clifford algebras rcliff Random clifford objects signature The signature of the Clifford algebra summary.clifford Summary methods for clifford objects term Deal with terms zap Zap small values in a clifford object zero The zero Clifford object
Author(s)
NA
Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>
References
J. Snygg (2012). A new approach to differential geometry using Clifford's geometric Algebra, Birkhauser. ISBN 978-0-8176-8282-8
D. Hestenes (1987). Clifford algebra to geometric calculus, Kluwer. ISBN 90-277-1673-0
C. Perwass (2009). Geometric algebra with applications in engineering, Springer. ISBN 978-3-540-89068-3
D. Hildenbrand (2013). Foundations of geometric algebra computing. Springer, ISBN 978-3-642-31794-1
See Also
Examples
as.1vector(1:4)
as.1vector(1:4) * rcliff()
# Following from Ablamowicz and Fauser (see vignette):
x <- clifford(list(1:3,c(1,5,7,8,10)),c(4,-10)) + 2
y <- clifford(list(c(1,2,3,7),c(1,5,6,8),c(1,4,6,7)),c(4,1,-3)) - 1
x*y # signature irrelevant