mcEvaluateAllClusters {clickstream} | R Documentation |
Evaluates all next page clicks in a clickstream training data set against a test data
Description
Evaluates all next page clicks in a clickstream training data set against a test data on the basis of a set of pre-computed Markov chains and corresponding clusters. Handles higher order by cycling through every possible pattern permutation. Produces and produces a report of observed and expected values in a matrix
Usage
mcEvaluateAllClusters(
markovchains,
clusters,
testCLS,
trainingCLS,
includeChiSquare = TRUE,
returnChiSquareOnly = FALSE
)
Arguments
markovchains |
A list of MarkovChain-objects. |
clusters |
The list of clusters. |
testCLS |
Clickstream object with test data. |
trainingCLS |
Clickstream object with training data (this should be the data used to build the markov chain object). |
includeChiSquare |
Should the result include the chi-square value? |
returnChiSquareOnly |
Should the result only consist of the chi-square value? |
Author(s)
Theo van Kraay theo.vankraay@hotmail.com
See Also
Examples
training <- c("User1,h,c,c,p,c,h,c,h,o,p,p,c,p,p,o",
"User2,i,c,i,c,c,c,o,o,o,i,d",
"User3,h,i,c,i,c,o,i,p,c,c,p,c,c,i,d",
"User4,c,c,p,c,d,o,i,h,o,o")
test <- c("User1,h,c,c,p,p,h,o,i,c,p,p,c,p,p,o",
"User2,i,c,i,c,c,c,d",
"User4,c,c,c,c,d")
csf <- tempfile()
writeLines(training, csf)
trainingCLS <- readClickstreams(csf, header = TRUE)
unlink(csf)
csf <- tempfile()
writeLines(test, csf)
testCLS <- readClickstreams(csf, header = TRUE)
unlink(csf)
clusters <- clusterClickstreams(trainingCLS, centers = 2, order = 1)
markovchains <- fitMarkovChains(clusters, order = 2)
mcEvaluateAllClusters(markovchains, clusters, testCLS, trainingCLS)
[Package clickstream version 1.3.3 Index]