| mcEvaluate {clickstream} | R Documentation | 
Evaluates the number of occurrences of predicted next clicks
Description
Evaluates the number of occurrences of predicted next clicks vs. total number of starting pattern occurrences in a given clickstream. The predicted next click can be a markov chain of any order.
Usage
mcEvaluate(mc, startPattern, testCLS)
Arguments
mc | 
 a markovchain object (this should have been built from a set of training data)  | 
startPattern | 
 the starting pattern we want to predict next click on, and evaluate observed occurrences in test data.  | 
testCLS | 
 clickstream object with test data  | 
Author(s)
Theo van Kraay theo.vankraay@hotmail.com
Examples
training <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o",
              "User2,i,c,i,c,c,c,d",
              "User3,h,i,c,i,c,p,c,c,p,c,c,i,d",
              "User4,c,c,p,c,d")
test <- c("User1,h,h,h,h,c,c,p,p,h,c,p,p,c,p,p,o",
          "User2,i,c,i,c,c,c,d",
          "User4,c,c,c,c,d,c,c,c,c")
csf <- tempfile()
writeLines(training, csf)
trainingCLS <- readClickstreams(csf, header = TRUE)
unlink(csf)
csf <- tempfile()
writeLines(test, csf)
testCLS <- readClickstreams(csf, header = TRUE)
unlink(csf)
mc <- fitMarkovChain(trainingCLS, order = 1)
startPattern <- new("Pattern", sequence = c("c","c")) 
res <- mcEvaluate(mc, startPattern, testCLS)
res
[Package clickstream version 1.3.3 Index]