| vcr.da.train {classmap} | R Documentation |
Carry out discriminant analysis on training data, and prepare to visualize its results.
Description
Custom DA function which prepares for graphical displays such as the classmap. The disciminant analysis itself is carried out by the maximum a posteriori rule, which maximizes the density of the mixture.
Usage
vcr.da.train(X, y, rule = "QDA", estmethod = "meancov")
Arguments
X |
a numerical matrix containing the predictors in its columns. Missing values are not allowed. |
y |
a factor with the given class labels. |
rule |
either " |
estmethod |
function for location and covariance estimation.
Should return a list with the center |
Value
A list with components:
yint |
number of the given class of each case. Can contain |
y |
given class label of each case. Can contain |
levels |
levels of |
predint |
predicted class number of each case. For each case this is the class with the highest posterior probability. Always exists. |
pred |
predicted label of each case. |
altint |
number of the alternative class. Among the classes different from the given class, it is the one with the highest posterior probability. Is |
altlab |
label of the alternative class. Is |
PAC |
probability of the alternative class. Is |
figparams |
parameters for computing |
fig |
distance of each case |
farness |
farness of each case from its given class. Is |
ofarness |
for each case |
classMS |
list with center and covariance matrix of each class |
lCurrent |
log of mixture density of each case in its given class. Is |
lPred |
log of mixture density of each case in its predicted class. Always exists. |
lAlt |
log of mixture density of each case in its alternative class. Is |
Author(s)
Raymaekers J., Rousseeuw P.J.
References
Raymaekers J., Rousseeuw P.J., Hubert M. (2021). Class maps for visualizing classification results. Technometrics, appeared online. doi: 10.1080/00401706.2021.1927849(link to open access pdf)
See Also
vcr.da.newdata, classmap, silplot, stackedplot
Examples
data("data_floralbuds")
X <- data_floralbuds[, 1:6]; y <- data_floralbuds[, 7]
vcrout <- vcr.da.train(X, y, rule = "QDA")
# For linear discriminant analysis, put rule = "LDA".
confmat.vcr(vcrout) # There are a few outliers
cols <- c("saddlebrown", "orange", "olivedrab4", "royalblue3")
stackedplot(vcrout, classCols = cols)
classmap(vcrout, "bud", classCols = cols)
# For more examples, we refer to the vignette:
## Not run:
vignette("Discriminant_analysis_examples")
## End(Not run)