cladoRcpp-package {cladoRcpp} | R Documentation |
Phylogenetic probability calculations using Rcpp
Description
Cladogenic probability calculations using Rcpp
Details
Package: | cladoRcpp |
Type: | Package |
Version: | 0.15.1 |
Date: | 2018-11-21 |
License: | GPL (>= 3) |
LazyLoad: | yes |
Summary: This package implements in C++/Rcpp various cladogenesis-related calculations that are slow in pure R. These include the calculation of the probability of various scenarios for the inheritance of geographic range at the divergence events on a phylogenetic tree, and other calculations necessary for models which are not continuous-time markov chains (CTMC), but where change instead occurs instantaneously at speciation events. Typically these models must assess the probability of every possible combination of (ancestor state, left descendent state, right descendent state). This means that there are up to (# of states)^3 combinations to investigate, and in biogeographical models, there can easily be hundreds of states, so calculation time becomes an issue. C++ implementation plus clever tricks (many combinations can be eliminated a priori) can greatly speed the computation time over naive R implementations.
CITATION INFO: This package is the result of my Ph.D.
research, please cite the package if you use it! Type:
citation(package="cladoRcpp")
to get the citation
information.
See also the citation information for the sister
packages, citation(package="rexpokit")
and
citation(package="BioGeoBEARS")
Further information: In particular, in
cladoRcpp
, functions are implemented to calculate
the probability, given a model, of various scenarios for
the inheritance of geographic range at speciation events,
where the left and right branches may inherit ranges
different from each other and different from the
ancestor.
The documentation for
rcpp_areas_list_to_states_list
, and
rcpp_calc_anclikes_sp
contain the basic
introduction to the logic of ancestral states and
cladogenesis probabilities with historical-biogeography
models.
The widely-used historical biogeography program
LAGRANGE
(Ree & Smith 2008) has only one
cladogenesis model, which is fixed and therefore not
subject to inference. LAGRANGE's cladogenesis model gives
equal weight/equal probability to all allowed
cladogenesis events. LAGRANGE allows:
1. sympatric speciation (copying the ancestral
range to descendant ranges), but only for ranges of
size=1 area
2. vicariant speciation (the
descendant range is divided between the 2 descendant
species), but at least one of the descendants must have a
ranges of size=1 area
3. sympatric "subset"
speciation (one species starts inside the ancestral
range, the other inherits the ancestral range); again,
one of the descendants must have a ranges of size=1
area
But, another range inheritance scenario is imaginable:
4. founder-event speciation, where one descendant species inherits the ancestral range, and the other species has a range completely outside of the ancestral range
cladoRcpp
allows specification of these different
models, including allowing different weights for the
different processes, if users would like to infer the
optimal model, rather than simply fixing it ahead of
time. The optimization and model choice is done with the
help of the sister packages, rexpokit
and
BioGeoBEARS
.
Note: I began this package with a little bit of code from Rcpp and the various examples that have been written with it, as well as from the following:
1. phyloRcppExamples by Vladimir Minin (https://r-forge.r-project.org/scm/viewvc.php/pkg/phyloRcppExamples/?root=evolmod and http://markovjumps.blogspot.com/2012/01/packaging-and-exposing-rcpp-functions.html) – which shows how to do phylogenetic operations in C++, accessed with R
2. rcppbugs by Whit Armstrong (https://github.com/armstrtw/rcppbugs and http://cran.r-project.org/web/packages/rcppbugs/index.html) – which does BUGS-style MCMC via C++ functions wrapped in R. It does this much faster than MCMCpack and rjags.
Note
Some starting code borrowed from Rcpp examples, Whit Armstrong's rcppbugs, and Vladimir Minin's phyloRcppExamples.
Author(s)
Nicholas J. Matzke matzke@berkeley.edu
References
http://phylo.wikidot.com/biogeobears
Matzke N (2012). "Founder-event speciation in BioGeoBEARS package dramatically improves likelihoods and alters parameter inference in Dispersal-Extinction-Cladogenesis (DEC) analyses." _Frontiers of Biogeography_, *4*(suppl. 1), pp. 210. ISSN 1948-6596, Poster abstract published in the Conference Program and Abstracts of the International Biogeography Society 6th Biannual Meeting, Miami, Florida. Poster Session P10: Historical and Paleo-Biogeography. Poster 129B. January 11, 2013, <URL: http://phylo.wikidot.com/matzke-2013-international-biogeography-society-poster>.
Ree RH, Moore BR, Webb CO and Donoghue MJ (2005). "A likelihood framework for inferring the evolution of geographic range on phylogenetic trees." _Evolution_, *59*(11), pp. 2299-311. Ree, Richard H Moore, Brian R Webb, Campbell O Donoghue, Michael J Research Support, U.S. Gov't, Non-P.H.S. United States Evolution; international journal of organic evolution Evolution. 2005 Nov;59(11):2299-311., <URL: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16396171>.
Ree RH and Smith SA (2008). "Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis." _Systematic Biology_, *57*(1), pp. 4-14. <URL: http://dx.doi.org/10.1080/10635150701883881>, <URL: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18253896>.
See Also
rcpp_calc_anclikes_sp
,
rcpp_areas_list_to_states_list
, Rcpp,
RcppArmadillo
Examples
# To get citation information for cladoRcpp, type:
citation(package="cladoRcpp")
# Please also cite the sister packages I created to utilize rexpokit:
# citation(package="rexpokit") # Roger Sidje is a coauthor
# of rexpokit and author of
# the FORTRAN EXPOKIT
# citation(package="BioGeoBEARS")
library(cladoRcpp)
# Test this first as it causes problems for --gct or --use-valgrind
areas_list = c("A", "B", "C")
areas_list
# Calculate the list of 0-based indices for each possible
# geographic range, i.e. each combination of areas
## Not run:
states_list = rcpp_areas_list_to_states_list(areas=areas_list, maxareas=3,
include_null_range=FALSE)
## End(Not run)
#################################################################################
# Examples using C++ to speed up the slow step of getting all possible combinations
# of areas (important when when number_of_areas >= 7, as this can mean
# 2^number_of_areas states, and (2^number_of_areas)^2 imaginable descendant pairs
# from each ancestral state.
#################################################################################
#######################################################
# Set up 2 vectors, then convolve them
#######################################################
ca = c(1,2,3,4,5)
cb = c(2,2,2,2,2)
rcpp_convolve(a=ca, b=cb)
#'
# Same as:
convolve(ca, cb, conj=TRUE, type="open")
#######################################################
# Cross-products
#######################################################
ca = c(1,2,3,4,5)
cb = c(2,2,2,2,2)
rcpp_mult2probvect(a=ca, b=cb)
# Same as:
c(ca %o% cb)
# Or:
outer(ca, cb)
c(outer(ca, cb))
# Or:
tcrossprod(ca, cb)
c(tcrossprod(ca, cb))
#################################################################################
# Calculate the number of states (i.e., number of difference geographic ranges,
# i.e. number of different combinations of presence/absence in areas) based on
# the number of areas
#################################################################################
numstates_from_numareas(numareas=3, maxareas=3, include_null_range=FALSE)
numstates_from_numareas(numareas=3, maxareas=3, include_null_range=TRUE)
numstates_from_numareas(numareas=3, maxareas=2, include_null_range=TRUE)
numstates_from_numareas(numareas=3, maxareas=1, include_null_range=TRUE)
numstates_from_numareas(numareas=7, maxareas=7, include_null_range=TRUE)
numstates_from_numareas(numareas=7, maxareas=2, include_null_range=TRUE)
numstates_from_numareas(numareas=8, maxareas=8, include_null_range=TRUE)
numstates_from_numareas(numareas=8, maxareas=2, include_null_range=TRUE)
numstates_from_numareas(numareas=20, maxareas=20, include_null_range=TRUE)
numstates_from_numareas(numareas=20, maxareas=2, include_null_range=TRUE)
numstates_from_numareas(numareas=20, maxareas=3, include_null_range=TRUE)
#################################################################################
# Generate the list of states based on the list of areas
# And then generate the continuous-time transition matrix (Q matrix)
# for changes that happen along branches
# (the changes that happen at nodes are cladogenesis events)
#################################################################################
# Specify the areas
areas_list = c("A", "B", "C")
areas_list
# Let's try Rcpp_combn_zerostart, in case that is the source of a
# problem found via AddressSanitizer
Rcpp_combn_zerostart(n_to_choose_from=4, k_to_choose=2, maxlim=1e+07)
Rcpp_combn_zerostart(n_to_choose_from=4, k_to_choose=3, maxlim=1e+07)
# Calculate the list of 0-based indices for each possible
# geographic range, i.e. each combination of areas
## Not run:
states_list = rcpp_areas_list_to_states_list(areas=areas_list, maxareas=3,
include_null_range=FALSE)
states_list
states_list = rcpp_areas_list_to_states_list(areas=areas_list, maxareas=3,
include_null_range=TRUE)
states_list
states_list = rcpp_areas_list_to_states_list(areas=areas_list, maxareas=2,
include_null_range=TRUE)
states_list
states_list = rcpp_areas_list_to_states_list(areas=areas_list, maxareas=1,
include_null_range=TRUE)
states_list
## End(Not run)
# Hard-code the along-branch dispersal and extinction rates
d = 0.2
e = 0.1
# Calculate the dispersal weights matrix and the extinction weights matrix
# Equal dispersal in all directions (unconstrained)
areas = areas_list
distances_mat = matrix(1, nrow=length(areas), ncol=length(areas))
dmat = matrix(d, nrow=length(areas), ncol=length(areas))
dmat
# Equal extinction probability for all areas
elist = rep(e, length(areas))
elist
# Set up the instantaneous rate matrix (Q matrix, Qmat)
# DON'T force a sparse-style (COO-formatted) matrix here
## Not run:
force_sparse = FALSE
Qmat = rcpp_states_list_to_DEmat(areas_list, states_list, dmat, elist,
include_null_range=TRUE, normalize_TF=TRUE, makeCOO_TF=force_sparse)
Qmat
# DO force a sparse-style (COO-formatted) matrix here
force_sparse = TRUE
Qmat = rcpp_states_list_to_DEmat(areas_list, states_list, dmat, elist,
include_null_range=TRUE, normalize_TF=TRUE, makeCOO_TF=force_sparse)
Qmat
## End(Not run)
#################################################################################
# Calculate the probability of each (ancestral range) -->
# (Left,Right descendant range pair) directly
#################################################################################
#######################################################
# Silly example, but which shows the math:
#######################################################
ca = c(1,2,3,4,5)
cb = c(2,2,2,2,2)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
condlike_of_data_for_each_ancestral_state = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=1, v=1, j=0, y=1, printmat=TRUE)
condlike_of_data_for_each_ancestral_state
# Another silly example, but which shows the normalization effect of specifying
# Rsp_rowsums:
ca_1s = c(1,1,1,1,1)
cb_1s = c(1,1,1,1,1)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
# Get the Rsp_rowsums (sum across each row; each row=an ancestral state)
Rsp_rowsums = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca_1s, Rcpp_rightprobs=cb_1s,
l=temp_states_indices, s=0.33, v=0.33, j=0, y=0.33, printmat=TRUE)
Rsp_rowsums
condlike_of_data_for_each_ancestral_state = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=1, v=1, j=0, y=1,
Rsp_rowsums=Rsp_rowsums, printmat=TRUE)
condlike_of_data_for_each_ancestral_state
#######################################################
# Silly example, but which shows the math -- redo with same cladogenesis model,
# specified differently
#######################################################
ca = c(1,2,3,4,5)
cb = c(2,2,2,2,2)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
condlike_of_data_for_each_ancestral_state = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=0.33, v=0.33, j=0, y=0.33, printmat=TRUE)
condlike_of_data_for_each_ancestral_state
# Another silly example, but which shows the normalization effect of specifying
# Rsp_rowsums:
ca_1s = c(1,1,1,1,1)
cb_1s = c(1,1,1,1,1)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
# Get the Rsp_rowsums (sum across each row; each row=an ancestral state)
Rsp_rowsums = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca_1s, Rcpp_rightprobs=cb_1s,
l=temp_states_indices, s=0.33, v=0.33, j=0, y=0.33, printmat=TRUE)
Rsp_rowsums
condlike_of_data_for_each_ancestral_state = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=0.33, v=0.33, j=0, y=0.33,
Rsp_rowsums=Rsp_rowsums, printmat=TRUE)
condlike_of_data_for_each_ancestral_state
#######################################################
# Silly example, but which shows the math -- redo with different cladogenesis model
# (sympatric-copying only, maximum range size of 1)
#######################################################
ca = c(1,2,3,4,5)
cb = c(2,2,2,2,2)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
condlike_of_data_for_each_ancestral_state = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=0, v=0, j=0, y=1, printmat=TRUE)
condlike_of_data_for_each_ancestral_state
# Another silly example, but which shows the normalization effect of specifying
# Rsp_rowsums:
ca_1s = c(1,1,1,1,1)
cb_1s = c(1,1,1,1,1)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
# Get the Rsp_rowsums (sum across each row; each row=an ancestral state)
Rsp_rowsums = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca_1s, Rcpp_rightprobs=cb_1s,
l=temp_states_indices, s=0, v=0, j=0, y=1, printmat=TRUE)
Rsp_rowsums
# Note that you get NaNs because some of your states (2 areas) are impossible on
# this model
condlike_of_data_for_each_ancestral_state = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=0, v=0, j=0, y=1,
Rsp_rowsums=Rsp_rowsums, printmat=TRUE)
condlike_of_data_for_each_ancestral_state
#######################################################
# Silly example, but which shows the math -- redo with different
# cladogenesis model (BayArea, sympatric-copying only)
#######################################################
ca = c(1,2,3,4,5)
cb = c(2,2,2,2,2)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
numareas = 3
maxent01y = matrix(0, nrow = numareas, ncol = numareas)
maxent01y[, 1] = seq(1, numareas)
maxent01y[2:3, 2] = seq(2, numareas)
maxent01y[3, 3] = seq(3, numareas)
condlike_of_data_for_each_ancestral_state = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=0, v=0, j=0, y=1, maxent01y=maxent01y,
max_minsize_as_function_of_ancsize=rep(3,numareas), printmat=TRUE)
condlike_of_data_for_each_ancestral_state
# Another silly example, but which shows the normalization effect of specifying
# Rsp_rowsums:
ca_1s = c(1,1,1,1,1)
cb_1s = c(1,1,1,1,1)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
# Get the Rsp_rowsums (sum across each row; each row=an ancestral state)
Rsp_rowsums = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca_1s, Rcpp_rightprobs=cb_1s,
l=temp_states_indices, s=0, v=0, j=0, y=1, maxent01y=maxent01y,
max_minsize_as_function_of_ancsize=rep(3,numareas), printmat=TRUE)
Rsp_rowsums
condlike_of_data_for_each_ancestral_state = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=0, v=0, j=0, y=1, maxent01y=maxent01y,
max_minsize_as_function_of_ancsize=rep(3,numareas), printmat=TRUE)
condlike_of_data_for_each_ancestral_state
#######################################################
# Actual example
#######################################################
# When ca & cb are 1s, and s, v, j, y are 1s or 0s:
# ...this shows how many possible descendant pairs are possible from each
# possible ancestor, under the model
# i.e., how many specific cladogenesis scenarios are possible from each
# possible ancestor
# This is the LAGRANGE model
ca = c(1,1,1,1,1)
cb = c(1,1,1,1,1)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
Rsp_rowsums = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca, Rcpp_rightprobs=cb,
l=temp_states_indices, s=1, v=1, j=0, y=1, printmat=TRUE)
Rsp_rowsums
# Calculate likelihoods of ancestral states if probabilities of each state
# at the base of the left and right branches ARE equal
# WITHOUT the weights correction
ca = c(0.2,0.2,0.2,0.2,0.2)
cb = c(0.2,0.2,0.2,0.2,0.2)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
condlike_of_data_for_each_ancestral_state = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=1, v=1, j=0, y=1, printmat=TRUE)
condlike_of_data_for_each_ancestral_state
# WITH the weights correction
ca = c(0.2,0.2,0.2,0.2,0.2)
cb = c(0.2,0.2,0.2,0.2,0.2)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
condlike_of_data_for_each_ancestral_state = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=1, v=1, j=0, y=1,
Rsp_rowsums=Rsp_rowsums, printmat=TRUE)
condlike_of_data_for_each_ancestral_state
# Calculate likelihoods of ancestral states if probabilities of each state
# at the base of the left and right branches are NOT equal
ca = c(0.05,0.1,0.15,0.2,0.5)
cb = c(0.05,0.1,0.15,0.2,0.5)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
condlike_of_data_for_each_ancestral_state = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=1, v=1, j=0, y=1, printmat=TRUE)
condlike_of_data_for_each_ancestral_state
# WITH the weights correction
# Calculate likelihoods of ancestral states if probabilities of each state
# at the base of the left and right branches ARE equal
ca = c(0.05,0.1,0.15,0.2,0.5)
cb = c(0.05,0.1,0.15,0.2,0.5)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
condlike_of_data_for_each_ancestral_state = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=1, v=1, j=0, y=1,
Rsp_rowsums=Rsp_rowsums, printmat=TRUE)
condlike_of_data_for_each_ancestral_state
# Calculate likelihoods of ancestral states if probabilities of each state
# at the base of the left and right branches are NOT equal
ca = c(0.05,0.1,0.15,0.2,0.5)
cb = c(0.05,0.1,0.15,0.2,0.5)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
condlike_of_data_for_each_ancestral_state = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=1, v=1, j=0, y=1,
Rsp_rowsums=Rsp_rowsums, printmat=TRUE)
condlike_of_data_for_each_ancestral_state
#######################################################
# Actual example -- for another model (allowing jump dispersal equal probability
# with the rest)
#######################################################
# When ca & cb are 1s, and s, v, j, y are 1s or 0s:
# ...this shows how many possible descendant pairs are possible from each possible
# ancestor, under the model
# i.e., how many specific cladogenesis scenarios are possible from each possible
# ancestor
# This is the LAGRANGE model
ca = c(1,1,1,1,1)
cb = c(1,1,1,1,1)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
Rsp_rowsums = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca, Rcpp_rightprobs=cb,
l=temp_states_indices, s=1, v=1, j=1, y=1, printmat=TRUE)
Rsp_rowsums
# Calculate likelihoods of ancestral states if probabilities of each state
# at the base of the left and right branches ARE equal
# WITHOUT the weights correction
ca = c(0.2,0.2,0.2,0.2,0.2)
cb = c(0.2,0.2,0.2,0.2,0.2)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
condlike_of_data_for_each_ancestral_state = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=1, v=1, j=1, y=1, printmat=TRUE)
condlike_of_data_for_each_ancestral_state
# WITH the weights correction
ca = c(0.2,0.2,0.2,0.2,0.2)
cb = c(0.2,0.2,0.2,0.2,0.2)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
condlike_of_data_for_each_ancestral_state = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=1, v=1, j=1, y=1,
Rsp_rowsums=Rsp_rowsums, printmat=TRUE)
condlike_of_data_for_each_ancestral_state
# Calculate likelihoods of ancestral states if probabilities of each state
# at the base of the left and right branches are NOT equal
ca = c(0.05,0.1,0.15,0.2,0.5)
cb = c(0.05,0.1,0.15,0.2,0.5)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
condlike_of_data_for_each_ancestral_state = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=1, v=1, j=1, y=1, printmat=TRUE)
condlike_of_data_for_each_ancestral_state
# WITH the weights correction
# Calculate likelihoods of ancestral states if probabilities of each state
# at the base of the left and right branches ARE equal
ca = c(0.05,0.1,0.15,0.2,0.5)
cb = c(0.05,0.1,0.15,0.2,0.5)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
condlike_of_data_for_each_ancestral_state = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=1, v=1, j=1, y=1,
Rsp_rowsums=Rsp_rowsums, printmat=TRUE)
condlike_of_data_for_each_ancestral_state
# Calculate likelihoods of ancestral states if probabilities of each state
# at the base of the left and right branches are NOT equal
ca = c(0.05,0.1,0.15,0.2,0.5)
cb = c(0.05,0.1,0.15,0.2,0.5)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
condlike_of_data_for_each_ancestral_state = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=1, v=1, j=1, y=1, Rsp_rowsums=Rsp_rowsums,
printmat=TRUE)
condlike_of_data_for_each_ancestral_state
#######################################################
# Calculate the sums of each row (i.e. for each ancestral state) --
# changes only based on the model
#######################################################
# Standard LAGRANGE model
# Rcpp_leftprobs=ca, Rcpp_rightprobs=cb are irrelevant except for length,
# rcpp_calc_anclikes_sp_rowsums() actually treats them as arrays of 1s
# if s, v, j, y are 1s or 0s, then Rsp_rowsums = counts of the events
ca = c(0.05,0.1,0.15,0.2,0.5)
cb = c(0.05,0.1,0.15,0.2,0.5)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
Rsp_rowsums = rcpp_calc_anclikes_sp_rowsums(Rcpp_leftprobs=ca, Rcpp_rightprobs=cb,
l=temp_states_indices, s=1, v=1, j=0, y=1, printmat=TRUE)
Rsp_rowsums
# Standard LAGRANGE model, adding jump dispersal
ca = c(0.05,0.1,0.15,0.2,0.5)
cb = c(0.05,0.1,0.15,0.2,0.5)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
Rsp_rowsums = rcpp_calc_anclikes_sp_rowsums(Rcpp_leftprobs=ca, Rcpp_rightprobs=cb,
l=temp_states_indices, s=1, v=1, j=1, y=1, printmat=TRUE)
Rsp_rowsums
# Same models, parameterized differently
# Allowing jump dispersal to areas outside of the ancestral range
Rsp_rowsums = rcpp_calc_anclikes_sp_rowsums(Rcpp_leftprobs=ca, Rcpp_rightprobs=cb,
l=temp_states_indices, s=0.5, v=0.5, j=0, y=0.5, printmat=TRUE)
Rsp_rowsums
# Allowing jump dispersal to areas outside of the ancestral range
Rsp_rowsums = rcpp_calc_anclikes_sp_rowsums(Rcpp_leftprobs=ca, Rcpp_rightprobs=cb,
l=temp_states_indices, s=0.5, v=0.5, j=0.5, y=0.5, printmat=TRUE)
Rsp_rowsums
#######################################################
# The relative weights of the different types of cladogenesis events doesn't matter,
# if the correction factor is included
#######################################################
# LAGRANGE+founder-event speciation
# Calculate likelihoods of ancestral states if probabilities of each state
# at the base of the left and right branches are NOT equal
# s,v,j,y weights set to 1
ca = c(0.05,0.1,0.15,0.2,0.5)
cb = c(0.05,0.1,0.15,0.2,0.5)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
uncorrected_condlike_of_data_for_each_ancestral_state = rcpp_calc_anclikes_sp(
Rcpp_leftprobs=ca, Rcpp_rightprobs=cb, l=temp_states_indices, s=1, v=1, j=1, y=1,
printmat=TRUE)
uncorrected_condlike_of_data_for_each_ancestral_state
Rsp_rowsums = rcpp_calc_anclikes_sp_rowsums(Rcpp_leftprobs=ca, Rcpp_rightprobs=cb,
l=temp_states_indices, s=1, v=1, j=1, y=1, printmat=TRUE)
Rsp_rowsums
condlike_of_data_for_each_ancestral_state = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=1, v=1, j=1, y=1,
Rsp_rowsums=Rsp_rowsums, printmat=TRUE)
condlike_of_data_for_each_ancestral_state
# s,v,j,y weights set to 0.5
ca = c(0.05,0.1,0.15,0.2,0.5)
cb = c(0.05,0.1,0.15,0.2,0.5)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
uncorrected_condlike_of_data_for_each_ancestral_state = rcpp_calc_anclikes_sp(
Rcpp_leftprobs=ca, Rcpp_rightprobs=cb, l=temp_states_indices, s=0.5, v=0.5, j=0.5,
y=0.5, printmat=TRUE)
uncorrected_condlike_of_data_for_each_ancestral_state
Rsp_rowsums = rcpp_calc_anclikes_sp_rowsums(Rcpp_leftprobs=ca, Rcpp_rightprobs=cb,
l=temp_states_indices, s=0.5, v=0.5, j=0.5, y=0.5, printmat=TRUE)
Rsp_rowsums
condlike_of_data_for_each_ancestral_state = rcpp_calc_anclikes_sp(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=0.5, v=0.5, j=0.5, y=0.5,
Rsp_rowsums=Rsp_rowsums, printmat=TRUE)
condlike_of_data_for_each_ancestral_state
#######################################################
# For large state spaces (many areas, a great many possible geographic ranges i.e.
# combinations of areas),
# rcpp_calc_anclikes_sp() gets slow, even with C++ implementation, as it loops
# through every possible combination
# of ancestral and descendant states. rcpp_calc_anclikes_sp_COOprobs() is a partial
# speedup which takes various shortcuts.
#
# Instead of having the weights/probabilites represented internally, and producing
# the conditional likelihoods as output,
# rcpp_calc_anclikes_sp_COOprobs() produces 3 lists, giving the coordinates of
# nonzero cells in the transition matrix.
#
# List #1: 0-based index of states on the Left branch, for each of the ancestral
# states
# List #2: 0-based index of states on the Right branch, for each of the ancestral
# states
# List #3: Weight of each transition, for each of the ancestral states
#######################################################
# Silly example, but which shows the math:
ca = c(1,2,3,4,5)
cb = c(2,2,2,2,2)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
list_weights_of_transitions = rcpp_calc_anclikes_sp_COOprobs(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=1, v=1, j=0, y=1, printmat=TRUE)
list_weights_of_transitions
# List #1: 0-based index of states on the Left branch, for each of the ancestral states
# List #2: 0-based index of states on the Right branch, for each of the ancestral
# states
# List #3: Weight of each transition, for each of the ancestral states
# Get the Rsp_rowsums (sums of the rows of the cladogenesis P matrix)
# Set the weights to 1
ca = c(1,1,1,1,1)
cb = c(1,1,1,1,1)
COO_probs_list_for_rowsums = rcpp_calc_anclikes_sp_COOprobs(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=1, v=1, j=0, y=1, printmat=TRUE)
COO_probs_list_for_rowsums
Rsp_rowsums = sapply(X=COO_probs_list_for_rowsums[[3]], FUN=sum)
Rsp_rowsums
# Calculate likelihoods of ancestral states if probabilities of each state
# at the base of the left and right branches ARE equal
ca = c(0.2,0.2,0.2,0.2,0.2)
cb = c(0.2,0.2,0.2,0.2,0.2)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
COO_weights_list = rcpp_calc_anclikes_sp_COOprobs(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=1, v=1, j=0, y=1, printmat=TRUE)
COO_weights_list
COO_weights_list_rowsums = sapply(X=COO_probs_list_for_rowsums[[3]], FUN=sum)
COO_weights_list_rowsums
# To see the transitional probabilities for each ancestral state, under the model:
COO_format_transition_probability_matrix = COO_probs_list_for_rowsums
for (i in 1:length(COO_format_transition_probability_matrix[[3]]))
{
COO_format_transition_probability_matrix[[3]][[i]] =
COO_format_transition_probability_matrix[[3]][[i]] / COO_weights_list_rowsums[[i]]
}
COO_format_transition_probability_matrix
# And you can see that the probabilities now sum to 1 for each row
sapply(X=COO_format_transition_probability_matrix[[3]], FUN=sum)
# The following is what you would get for the conditional likelihoods of the
# data given each ancestral state, WITHOUT making each row
# of the transition matrix sum to 1
uncorrected_COO_condlikes_list = rcpp_calc_anclikes_sp_using_COOprobs(
Rcpp_leftprobs=ca, Rcpp_rightprobs=cb, RCOO_left_i_list=COO_weights_list[[1]],
RCOO_right_j_list=COO_weights_list[[2]], RCOO_probs_list=COO_weights_list[[3]],
Rsp_rowsums=rep(1,length(ca)), printmat=TRUE)
uncorrected_COO_condlikes_list
# This is what you get if you correct, so that each row sums to 1,
# using the sums of the rows to normalize
corrected_COO_condlikes_list = rcpp_calc_anclikes_sp_using_COOprobs(
Rcpp_leftprobs=ca, Rcpp_rightprobs=cb, RCOO_left_i_list=COO_weights_list[[1]],
RCOO_right_j_list=COO_weights_list[[2]], RCOO_probs_list=COO_weights_list[[3]],
Rsp_rowsums=COO_weights_list_rowsums, printmat=TRUE)
corrected_COO_condlikes_list
#################################################################################
# rcpp_calc_anclikes_sp_COOweights_faster():
# An even faster method "intelligently" looks for allowed transitions with
# nonzero weights
# The output is stored in 4 lists / columns in COO_weights_columnar:
# List #1. 0-based index of ancestral states / geographic ranges
# List #2. 0-based index of Left descendant states / geographic ranges
# List #3. 0-based index of Right descendant states / geographic ranges
# List #4. Weight (or probability, if each weight has been divided by the sum
# of the weights for the row) of the
# transition specified by that cell.
#################################################################################
# Get the Rsp_rowsums (sums of the rows of the cladogenesis P matrix)
# Set the weights to 1
ca = c(1,1,1,1,1) # ca and cb don't matter here, since we are just calculating
# the weights
cb = c(1,1,1,1,1)
temp_states_indices = list(c(0), c(1), c(2), c(0,1), c(1,2))
COO_weights_columnar = rcpp_calc_anclikes_sp_COOweights_faster(
Rcpp_leftprobs=ca, Rcpp_rightprobs=cb, l=temp_states_indices, s=1, v=1,
j=0, y=1, printmat=TRUE)
COO_weights_columnar
# List #1. 0-based index of ancestral states / geographic ranges
# List #2. 0-based index of Left descendant states / geographic ranges
# List #3. 0-based index of Right descendant states / geographic ranges
# List #4. Weight (or probability, if each weight has been divided by the
# sum of the weights for the row) of the
# transition specified by that cell.
# Calculate the sums of the weights for each row/ancestral state
numstates = 1+max(sapply(X=COO_weights_columnar, FUN=max)[1:3])
Rsp_rowsums = rcpp_calc_rowsums_for_COOweights_columnar(
COO_weights_columnar=COO_weights_columnar, numstates=numstates)
Rsp_rowsums
# Silly example, but which shows the math:
ca = c(1,2,3,4,5)
cb = c(2,2,2,2,2)
# WITHOUT using appropriate correction (correction = dividing by the
# sum of the weights for each row)
uncorrected_condlikes_list = rcpp_calc_splitlikes_using_COOweights_columnar(
Rcpp_leftprobs=ca, Rcpp_rightprobs=cb, COO_weights_columnar=COO_weights_columnar,
Rsp_rowsums=rep(1,numstates), printmat=TRUE)
uncorrected_condlikes_list
# WITH using appropriate correction (correction = dividing by the sum
# of the weights for each row)
corrected_condlikes_list = rcpp_calc_splitlikes_using_COOweights_columnar(
Rcpp_leftprobs=ca, Rcpp_rightprobs=cb, COO_weights_columnar=COO_weights_columnar,
Rsp_rowsums, printmat=TRUE)
corrected_condlikes_list
# Calculate likelihoods of ancestral states if probabilities of each state
# at the base of the left and right branches ARE equal
# Get the Rsp_rowsums (sums of the rows of the cladogenesis P matrix)
# Set the weights to 1
ca = c(0.2,0.2,0.2,0.2,0.2) # ca and cb don't matter here, since we are just
# calculating the weights
cb = c(0.2,0.2,0.2,0.2,0.2)
COO_weights_columnar = rcpp_calc_anclikes_sp_COOweights_faster(Rcpp_leftprobs=ca,
Rcpp_rightprobs=cb, l=temp_states_indices, s=1, v=1, j=0, y=1, printmat=TRUE)
COO_weights_columnar
# List #1. 0-based index of ancestral states / geographic ranges
# List #2. 0-based index of Left descendant states / geographic ranges
# List #3. 0-based index of Right descendant states / geographic ranges
# List #4. Weight (or probability, if each weight has been divided by the
# sum of the weights for the row) of the
# transition specified by that cell.
# Calculate the sums of the weights for each row/ancestral state
numstates = 1+max(sapply(X=COO_weights_columnar, FUN=max)[1:3])
Rsp_rowsums = rcpp_calc_rowsums_for_COOweights_columnar(
COO_weights_columnar=COO_weights_columnar, numstates=numstates)
Rsp_rowsums
# WITHOUT using appropriate correction (correction = dividing by
# the sum of the weights for each row)
uncorrected_condlikes_list = rcpp_calc_splitlikes_using_COOweights_columnar(
Rcpp_leftprobs=ca, Rcpp_rightprobs=cb, COO_weights_columnar=COO_weights_columnar,
Rsp_rowsums=rep(1,numstates), printmat=TRUE)
uncorrected_condlikes_list
# WITH using appropriate correction (correction = dividing by the sum of the
# weights for each row)
corrected_condlikes_list = rcpp_calc_splitlikes_using_COOweights_columnar(
Rcpp_leftprobs=ca, Rcpp_rightprobs=cb, COO_weights_columnar=COO_weights_columnar,
Rsp_rowsums, printmat=TRUE)
corrected_condlikes_list