civ {civ} | R Documentation |
Categorical Instrumental Variable Estimator.
Description
Implementation of the categorical instrumental variable estimator.
Usage
civ(y, D, Z, X = NULL, K = 2)
Arguments
y |
The outcome variable, a numerical vector. |
D |
A matrix of endogenous variables. |
Z |
A matrix of instruments, where the first column corresponds to the categorical instrument. |
X |
An optional matrix of control variables. |
K |
The number of support points of the estimated instrument
|
Value
civ
returns an object of S3 class civ
. An object of
class civ
is a list containing the following components:
coef
A vector of second-stage coefficient estimates.
iv_fit
Object of class
ivreg
from the IV regression ofy
onD
andX
using the the estimated\hat{F}_K
as an instrument forD
. See alsoAER::ivreg()
for details.kcmeans_fit
Object of class
kcmeans
from the K-Conditional-Means regression ofD
onZ
andX
. See alsokcmeans::kcmeans()
for details.- K
Pass-through of selected user-provided arguments. See above.
References
Fox J, Kleiber C, Zeileis A (2023). "ivreg: Instrumental-Variables Regression by '2SLS', '2SM', or '2SMM', with Diagnostics". R package.
Wiemann T (2023). "Optimal Categorical Instruments."
Examples
# Simulate data from a simple IV model with 800 observations
nobs = 800 # sample size
Z <- sample(1:20, nobs, replace = TRUE) # observed instrument
Z0 <- Z %% 2 # underlying latent instrument
U_V <- matrix(rnorm(2 * nobs, 0, 1), nobs, 2) %*%
chol(matrix(c(1, 0.6, 0.6, 1), 2, 2)) # first and second stage errors
D <- Z0 + U_V[, 2] # endogenous variable
y <- D + U_V[, 1] # outcome variable
# Estimate categorical instrument variable estimator with K = 2
civ_fit <- civ(y, D, Z, K = 3)
summary(civ_fit)