cpciuupi2 {ciuupi2} | R Documentation |
Compute the coverage probability of the Kabaila & Giri (2009) CIUUPI
Description
Evaluate the coverage probability of the Kabaila & Giri (2009) confidence
interval that utilizes uncertain prior information (CIUUPI),
with minimum coverage 1 - alpha
, at gam
.
Usage
cpciuupi2(gam, bsvec, alpha, m, rho, natural = 1)
Arguments
gam |
A value of gamma or vector of gamma values at which the coverage probability function is evaluated |
bsvec |
The vector (b(d/6),b(2d/6),...,b(5d/6),s(0),s(d/6),...,s(5d/6))
computed using |
alpha |
The minimum coverage probability is 1 - |
m |
Degrees of freedom |
rho |
A known correlation |
natural |
Equal to 1 (default) if the b and s functions are obtained by
natural cubic spline interpolation or 0 if obtained by clamped cubic spline
interpolation. This parameter must take the same value as that used in
|
Details
Suppose that
y = X \beta + \epsilon
where y
is a random
n
-vector of responses, X
is a known n
by p
matrix
with linearly independent columns, \beta
is an unknown parameter
p
-vector and \epsilon
is a random n
-vector with
components that are independent and identically normally distributed with
zero mean and unknown variance. The parameter of interest is \theta =
a
' \beta
. The uncertain prior information is that \tau =
c
' \beta
takes the value t
, where a
and c
are specified linearly independent vectors and t
is a specified
number. rho
is the known correlation between the least squares
estimators of \theta
and \tau
. It is determined by the n
by p
design matrix X and the p
-vectors a and c using
find_rho
.
In the examples, we continue with the same 2 x 2 factorial example described
in the documentation for find_rho
.
Value
The value(s) of the coverage probability of the Kabaila & Giri (2009)
CIUUPI at gam
.
References
Kabaila, P. and Giri, K. (2009) Confidence intervals in regression utilizing prior information. Journal of Statistical Planning and Inference, 139, 3419 - 3429.
See Also
Examples
alpha <- 0.05
m <- 8
# Find the vector (b(d/6),...,b(5d/6),s(0),...,s(5d/6)) that specifies the
# Kabaila & Giri (2009) CIUUPI for the first definition of the
# scaled expected length (default) (takes about 30 mins to run):
bsvec <- bsciuupi2(alpha, m, rho = -0.7071068)
# The result bsvec is (to 7 decimal places) the following:
bsvec <- c(-0.0287487, -0.2151595, -0.3430403, -0.3125889, -0.0852146,
1.9795390, 2.0665414, 2.3984471, 2.6460159, 2.6170066, 2.3925494)
# Graph the coverage probability function
gam <- seq(0, 10, by = 0.1)
cp <- cpciuupi2(gam, bsvec, alpha, m, rho = -0.7071068)
plot(gam, cp, type = "l", lwd = 2, ylab = "", las = 1, xaxs = "i",
main = "Coverage Probability", col = "blue",
xlab = expression(paste("|", gamma, "|")), ylim = c(0.9490, 0.9510))
abline(h = 1-alpha, lty = 2)