SplineML {circularEV} | R Documentation |
Spline ML fitting
Description
Spline ML fitting
Usage
SplineML(
excesses,
drc,
thetaVec = 0:360,
nBoot = 100,
numIntKnots = 10,
knotsType = "eqSpaced",
lambda = seq(0, 2, by = 0.5),
kappa = seq(0, 2, by = 0.5),
nCandidatesInit = 1000,
numCores = 2
)
Arguments
excesses |
Excesses data |
drc |
Directional covariate |
thetaVec |
Grid values at which the threshold will be evaluated |
nBoot |
Number of bootstrap resamples |
numIntKnots |
Number of internal knots |
knotsType |
Position of knots. Default to "eqSpaced". Otherwise, the knots will be placed at the quantiles of observed directions. |
lambda |
Penalty parameter values for lambda |
kappa |
Penalty parameter values for kappa |
nCandidatesInit |
Number of initial parameter vectors. Optimisation will start with the best. |
numCores |
Number of CPU cores to be used |
Details
See Konzen, E., Neves, C., and Jonathan, P. (2021). Modeling nonstationary extremes of storm severity: Comparing parametric and semiparametric inference. Environmetrics, 32(4), e2667.
Value
List of bootstrap estimates of shape and scale, and optimal values of lambda and kappa.
Examples
data(HsSP)
data(drc)
timeRange <- 54.5
idx <- order(drc)
drc <- drc[idx]
Data <- HsSP[idx]
set.seed(1234)
Data <- Data + runif(length(Data), -1e-4, 1e-4)
thetaVec <- 1:360
data(thresholdExampleML) # loads threshold example
thrResultML <- thresholdExampleML
lambda <- 100
kappa <- 40
thrPerObs <- thrResultML[drc]
excess <- Data - thrPerObs
drcExcess <- drc[excess>0]
excess <- excess[excess>0]
splineFit <- SplineML(excesses = excess, drc = drcExcess, nBoot = 30,
numIntKnots = 16, lambda=lambda, kappa=kappa, numCores=2)
xiBoot <- splineFit$xi
sigBoot <- splineFit$sig
PlotParamEstim(bootEstimates=xiBoot, thetaGrid=0:360, ylab=bquote(hat(xi)),
alpha=0.05, ylim=NULL, cex.axis=15, cex.lab=2, thrWidth=2)
PlotParamEstim(bootEstimates=sigBoot, thetaGrid=0:360, ylab=bquote(hat(sigma)),
alpha=0.05, ylim=NULL, cex.axis=15, cex.lab=2, thrWidth=2)
h <- 60 # needed for calculating local probability of exceedances
RLBoot <- CalcRLsplineML(Data=Data, drc=drc, xiBoot=xiBoot, sigBoot=sigBoot, h=h,
TTs=c(100, 10000), thetaGrid=thetaVec,
timeRange=timeRange, thr=thrResultML)
# 100-year level
PlotRL(RLBootList=RLBoot, thetaGrid=thetaVec, Data=Data, drc=drc,
TTs=c(100, 10000), whichPlot=1, alpha=0.05, ylim=NULL,
pointSize=1, cex.axis=15, cex.lab=2, thrWidth=2)
PolarPlotRL(RLBootList=RLBoot, thetaGrid=thetaVec, Data=Data, drc=drc,
TTs=c(100, 10000), whichPlot=1, alpha=0.05, ylim=c(0, 25),
pointSize=4, fontSize=12, lineWidth=2)
## See also examples in vignette:
# vignette("splineML", package = "circularEV")
[Package circularEV version 0.1.1 Index]