chunker {chunkR} | R Documentation |
chunker
Description
The objects of class "chunker" are the central elements of the chunkR package. These objects can store a data chunk and other information required for the process of reading a file in pieces. A "chunker" object is created with the chunker() function, that requires the path to a file, and other arguments, as the size of the chunk and the data type ("data.frame" or "matrix"). Two basic methods are defined to manipulate the object:
- next_chunk
function to read the next chunk
- get_table
function to retrieve the data
The functions get_completed
and get_colnames
allow to get the number of rows already read, and the column names of the
table.
Usage
chunker(path, sep = " ", quoted = FALSE, has_colnames = TRUE,
has_rownames = TRUE, chunksize = 1000L, data_format = c("data.frame",
"matrix"), columns_classes = character(0), autodetect = TRUE,
scan_rows = 10)
Arguments
path |
Input file path |
sep |
Character separating cells in the input table (default = " ") |
quoted |
Quoted character data? Default FALSE. If TRUE, the program removes quotes. |
has_colnames |
Column names present in the input table? (Logical, default TRUE) |
has_rownames |
Row names present in the input table? (Logical, default TRUE) |
chunksize |
Chunk size (default 1000) |
data_format |
Format of input data: "data.frame" (default) or "matrix". |
columns_classes |
Vector with the class of each column: "character", "numeric" (aka "double"), "integer" or "logical". |
autodetect |
Use auto-detection of columns classes? Default TRUE. |
scan_rows |
How many rows to scan for auto-detection of columns classes. Default is 10. Note that this value shoud be increased when columns only have NA values in the scanned rows. Columns classes are detected via a call to read.table with the scan_rows value passed to the nrows parameter. |
Examples
data(iris)
# write iris as tab delimited file. Note that quote is set to FALSE
tmp_path <- file.path(tempdir(),"iris.txt")
write.table(iris, tmp_path, quote = FALSE)
#-----------------------------------------------------------------#
#--- Reading a data frame with automatic column-type detection ---#
#-----------------------------------------------------------------#
# create a 'chunker' object passing the path of the input file.
my_chunker_object <- chunker(tmp_path, chunksize = 30)
# read a chunk
next_chunk(my_chunker_object)
# get the chunk
get_table(my_chunker_object)
# read another chunk
next_chunk(my_chunker_object)
# get the number of lines already read
get_completed(my_chunker_object)
#--- read a csv file ---#
tmp_path_csv <- file.path(tempdir(),"iris.csv")
write.table(iris, tmp_path_csv, quote = FALSE, sep = ",")
# read the csv indicating the value of the 'sep' parameter
my_chunker_object2 <- chunker(tmp_path_csv, chunksize = 30, sep = ",")
# the file can then be processed as with tab delimiters
# remove temporal file
file.remove(tmp_path_csv)
#--------------------------------------------------------#
#--- Reading a data frame using column types argument ---#
#--------------------------------------------------------#
## Four types can be passed : "character", "numeric" (aka "double"), "integer", "logical"
# create a 'chunker' object passing the path of the input file.
my_chunker_object3 <- chunker(tmp_path, chunksize = 120,
columns_classes = c("numeric", "numeric", "numeric","numeric", "character"))
# read a chunk
next_chunk(my_chunker_object3)
# get the chunk
get_table(my_chunker_object3)
# read another chunk
next_chunk(my_chunker_object3)
# get the number of lines already read
get_completed(my_chunker_object3)
#-------------------------#
#--- Reading a matrix ---#
#-------------------------#
my_chunker_object4 <- chunker(tmp_path, chunksize = 30, data_format= "matrix")
# store the chunk as a character matrix in R
this_data <- get_table(my_chunker_object4)
# The package provides a fast generic C++ function for conversion from
# matrix (any R type) to data frame
this_data_as_df2 <- matrix2df(this_data)
# remove temporal file
file.remove(tmp_path)
## Not run:
#----------------------------------#
#--- Example with a big table -----#
#----------------------------------#
### Example with a data frame
# create a large data frame, and write it in a temporal directory
tmp_path <- file.path(tempdir(),"big_table.txt")
out <- data.frame(numeric_data = runif(1000000),
character_data = sample(c("a", "t", "c", "g"), 1000000,
replace = TRUE),
integer_data = sample(1000000),
bool_data = sample(c(TRUE, FALSE), 1000000, replace = TRUE))
write.table(out, tmp_path, quote = FALSE)
# create a chunker object, reading in chunks of 10000 lines
my_chunker_object5 <- chunker(tmp_path, chunksize = 10000)
next_chunk(my_chunker_object5)
data <- get_table(my_chunker_object5)
# check classes
lapply(data,typeof)
file.remove(tmp_path)
### Example with a matrix
# create a large matrix, and write it in a temporal directory
my_table <- tempfile()
write.table(matrix(sample(c("a", "t", "c", "g"), 1000000, replace = TRUE),
100000, 1000), my_table, quote = FALSE)
# create a chunker object, reading in chunks of 10000 lines
my_chunker_object6 <- chunker(my_table, chunksize = 10000, data_format= "matrix")
# create a loop to read all the file and make something with it
lines <- 0
while(next_chunk(my_chunker_object6))
{
data <- get_table(my_chunker_object6)
# do something with data, e.g., convert to data frame first
data <- matrix2df(data)
lines <- lines + nrow(data)
cat("Processed ", lines, "lines\n")
}
# remove the temporal file
file.remove(my_table)
## End(Not run)