chunkR-package {chunkR}R Documentation

Read Tables in Chunks

Description

Read tables chunk by chunk using a C++ backend and a simple R interface.

Details

This package allows to read long text tables in chunks. The objects of class "chunker" are the central elements of the chunkR package. These objects can store a data chunk and other information required for the process of reading a file in pieces. A chunker object is created with the chunker function, that requires the path to a file, and other arguments, as the size of the chunk. Two basic methods are defined to manipulate the object:

- next_chunk function to read the next chunk

- get_table to retrieve the data

The functions get_completed and get_colnames allow to get the number of rows already read, and the column names of the table.

The program can read data frames (with column type detection) or matrices. The program reads each chunk with the next_chunk function (that return TRUE), and makes it accessible via the get_table function. After reading all the file, next_chunk function returns FALSE and the get_table function an empty data frame/matrix.

Author(s)

Leandro Roser

Maintainer: Leandro Roser <learoser@gmail.com>

Examples

data(iris)

# write iris as tab delimited file. Note that quote is set to FALSE

tmp_path <- file.path(tempdir(),"iris.txt")
write.table(iris, tmp_path, quote = FALSE)

#----------------------------------------------------------------#
#--- Reading a data frame with automatic column-type detection ---#
#----------------------------------------------------------------#

# create a 'chunker' object passing the path of the input file.
my_chunker_object <- chunker(tmp_path, chunksize = 30)

# read a chunk
next_chunk(my_chunker_object)

# get the chunk
 get_table(my_chunker_object)

# read another chunk
next_chunk(my_chunker_object)

# get the number of lines already read
get_completed(my_chunker_object)


#--- read a csv file ---#

tmp_path_csv <- file.path(tempdir(),"iris.csv")

write.table(iris, tmp_path_csv, quote = FALSE, sep = ",")

# read the csv indicating the value of the sep parameter
my_chunker_object2 <- chunker(tmp_path_csv, chunksize = 30, sep = ",")
# the file can  then be processed as with tab delimiters

# remove temporal file
file.remove(tmp_path_csv)

#-------------------------------------------------------#
#--- Reading a data frame using column types argument ---#
#-------------------------------------------------------#

## Four types can be passed : "character", "numeric" (aka "double"), "integer", "logical"

# create a 'chunker' object passing the path of the input file.
my_chunker_object3 <- chunker(tmp_path, chunksize = 120,
 columns_classes = c("numeric", "numeric", "numeric","numeric", "character"))

# read a chunk
next_chunk(my_chunker_object3)

# get the chunk
get_table(my_chunker_object3)

# read another chunk
next_chunk(my_chunker_object3)

# get the number of lines already read
get_completed(my_chunker_object3)


#-------------------------#
#--- Reading a matrix  ---#
#-------------------------#

my_chunker_object4 <- chunker(tmp_path, chunksize = 30, data_format= "matrix")

# store the chunk as a character matrix in R
this_data <- get_table(my_chunker_object4)


# The package provides a fast generic C++ function for conversion from
# matrix (any R type) to data frame
this_data_as_df2 <- matrix2df(this_data)

# remove temporal file
file.remove(tmp_path)


 ## Not run: 
#----------------------------------#
#--- Example with a big table -----#
#----------------------------------#

### Example with a data frame

# create a large data frame, and write it in a temporal directory

tmp_path <- file.path(tempdir(),"big_table.txt")

out <- data.frame(numeric_data = runif(1000000),
                  character_data = sample(c("a", "t", "c", "g"), 1000000, 
                  replace = TRUE),
                  integer_data = sample(1000000),
                  bool_data = sample(c(TRUE, FALSE), 1000000, replace = TRUE))


write.table(out, tmp_path, quote = FALSE)

# create a chunker object, reading in chunks of 10000 lines
my_chunker_object5 <- chunker(tmp_path, chunksize = 10000)

next_chunk(my_chunker_object5)
data <- get_table(my_chunker_object5) 

# check classes
lapply(data,typeof)
file.remove(tmp_path)


### Example with a matrix

# create a large matrix, and write it in a temporal directory

my_table <- tempfile()
write.table(matrix(sample(c("a", "t", "c", "g"), 1000000, replace = TRUE), 
100000, 1000), my_table, quote = FALSE)

# create a chunker object, reading in chunks of 10000 lines
my_chunker_object6 <- chunker(my_table, chunksize = 10000, data_format= "matrix")

# create a loop to read all the file and make something with it

lines <- 0
while(next_chunk(my_chunker_object6))
{
  data <- get_table(my_chunker_object6) 
  
  # do something with data, e.g., convert to data frame first
  data <- matrix2df(data)
  
  lines <- lines + nrow(data)
  cat("Processed ", lines, "lines\n")
}

# remove the temporal file
file.remove(my_table)

## End(Not run)

[Package chunkR version 1.1.1 Index]