Estimate.b.k {chords} | R Documentation |
RDS population size estimation
Description
Estimate population size from respondent driven samples (RDS) using maximum likelihood, and several variation. The underlying idea is that the sample spreads like an epidemic in the target population as described in the reference.
Usage
Estimate.b.k(rds.object, type = "mle", jack.control = NULL)
Arguments
rds.object |
A object of class |
type |
A character vector with the type of estimation. Possible values:
|
jack.control |
A object of class |
Details
As of version 0.95, this function is the main workhorse of the chords
package.
Given an rds-class
object, it will return population size estimates for each degree.
Note that for the rescaling
and parametric
estimators, the input rds-object
is expected to contain some initial estimate in the estimates
slot.
See the reference for a description of the likelihood problem solved. Optimization is performed by noting that likelihood is coordinate-wise convex, thus amounts to a series of line-searches.
Value
An rds-class
object with an updated estimates
slot.
The estiamtes
slot is list
with the following components:
call |
The function call. |
Nk.estimates |
The estimated degree frequencies. |
log.bk.estimates |
The estimated sampling rates for each degree. In log scale. |
convergence |
0 if estimation of |
References
[1] Berchenko, Y., Rosenblatt D.J., and S.D.W. Frost. "Modeling and Analyzing Respondent Driven Sampling as a Counting Process." arXiv:1304.3505,
See Also
initializeRdsObject
,
makeRdsSample
,
getTheta
.
Examples
# Preliminaries
data(brazil)
rds.object2<- initializeRdsObject(brazil)
see <- function(x) plot(x$estimates$Nk.estimates, type='h')
# Maximum likelihood
rds.object <- Estimate.b.k(rds.object = rds.object2 )
see(rds.object)
# View estimates:
plot(rds.object$estimates$Nk.estimates, type='h')
# Population size estimate:
sum(rds.object$estimates$Nk.estimates)
plot(rds.object$estimates$log.bk.estimates, type='h')
## Recover theta assuming b.k=b_0*k^theta
getTheta(rds.object)
# How many degrees were imputed?:
table(rds.object$estimates$convergence)
# Observed degree estimation:
rds.object.4 <- Estimate.b.k(rds.object = rds.object, type='observed')
see(rds.object.4)
# Naive rescaling
rds.object.5 <- Estimate.b.k(rds.object = rds.object, type='rescaling')
see(rds.object.5)
# Parametric rates
rds.object.6 <- Estimate.b.k(rds.object = rds.object,
type='parametric')
see(rds.object.6)
jack.control <- makeJackControl(3, 1e1)
rds.object.7 <- Estimate.b.k(rds.object = rds.object,
type='leave-d-out',
jack.control = jack.control)
see(rds.object.7)
rds.object.8 <- Estimate.b.k(rds.object = rds.object,
type='integrated',
jack.control = jack.control)
see(rds.object.8)
rds.object.9 <- Estimate.b.k(rds.object = rds.object,
type='jeffreys')
see(rds.object.9)
## Not run:
## Simulated data example:
dk <- c(2, 1e1) # unique degree classes
true.dks <- rep(0,max(dk)); true.dks[dk] <- dk
true.Nks <- rep(0,max(dk)); true.Nks[dk] <- 1e3
beta <- 1 #5e-6
theta <- 0.1
true.log.bks <- rep(-Inf, max(dk))
true.log.bks[dk] <- theta*log(beta*dk)
sample.length <- 4e2
nsims <- 1e2
simlist <- list()
for(i in 1:nsims){
simlist[[i]] <- makeRdsSample(
N.k =true.Nks ,
b.k = exp(true.log.bks),
sample.length = sample.length)
}
# Estimate betas and theta with chords:
llvec <- rep(NA,nsims)
bklist <- list()
for(i in 1:nsims){
# i <- 2
simlist[[i]] <- Estimate.b.k(rds.object = simlist[[i]])
# llvec[i] <- simlist[[i]]$estimates$likelihood
bklist[[i]] <- simlist[[i]]$estimates$log.bk.estimates
}
b1vec <- bklist
b2vec <- bklist
hist(b1vec)
abline(v=true.log.bks[2])
hist(b2vec)
abline(v=true.log.bks[10])
beta0vec <- rep(-Inf,nsims)
thetavec <- rep(-Inf,nsims)
nvec <- rep(-Inf,nsims)
converged <- rep(9999,nsims)
for(i in 1:nsims){
# i <- 2
nvec[i] <- sum(simlist[[i]]$estimates$Nk.estimates)
converged[i] <- sum(simlist[[i]]$estimates$convergence, na.rm=TRUE)
# tfit <- getTheta(simlist[[i]])
# beta0vec[i] <- tfit$log.beta_0
# thetavec[i] <- tfit$theta
}
summary(beta0vec)
summary(nvec)
# summary(thetavec)
# hist(thetavec)
# abline(v=theta)
hist(nvec)
abline(v=sum(true.Nks), col='red')
abline(v=median(nvec, na.rm = TRUE), lty=2)
table(converged)
# Try various re-estimatinons:
rds.object2 <- simlist[[which(is.infinite(nvec))[1]]]
rds.object <- Estimate.b.k(rds.object = rds.object2 )
see(rds.object)
rds.object$estimates$Nk.estimates
rds.object.5 <- Estimate.b.k(rds.object = rds.object, type='rescaling')
see(rds.object.5) # will not work. less than 2 converging estimates.
rds.object.5$estimates$Nk.estimates
rds.object.6 <- Estimate.b.k(rds.object = rds.object, type='parametric')
see(rds.object.6) # will not work. less than 2 converging estimates.
jack.control <- makeJackControl(3, 1e2)
rds.object.7 <- Estimate.b.k(rds.object = rds.object,
type='leave-d-out',
jack.control = jack.control)
see(rds.object.7)
rds.object.7$estimates$Nk.estimates
rds.object.8 <- Estimate.b.k(rds.object = rds.object, type='integrated')
see(rds.object.8)
rds.object.8$estimates$Nk.estimates
rds.object.9 <- Estimate.b.k(rds.object = rds.object, type='jeffreys')
see(rds.object.9)
rds.object.9$estimates$Nk.estimates
## End(Not run)