hinge.test {chngpt} | R Documentation |
A non-nested hypothesis testing problem for threshold regression models
Description
Test a hinge effect against a linear effect
Usage
hinge.test(formula, cov.interest, family = c("binomial", "gaussian"), data, thres = NA,
lb.quantile = 0.1, ub.quantile = 0.9, chngpts.cnt = 10, method = c("FDB", "B", "DB"),
boot.B = 10000, B2 = NA, verbose = FALSE)
Arguments
formula |
formula |
cov.interest |
cov.interest |
family |
family |
data |
data |
thres |
If supplied, this will be the threshold value to use in the hinge model. |
lb.quantile |
lower bound of threshold candidates in quantile |
ub.quantile |
upper bound of threshold candidates in quantile |
chngpts.cnt |
number of candidate thresholds |
method |
type of test. FDB: false double bootstrap, B: parametric bootstrap, DB: double bootstrap. |
boot.B |
number of parametric bootstrap replicates for B and FDB |
B2 |
number of inner bootstrap replicates for DB |
verbose |
verbose |
Value
A list of class htest
p.value |
P-value |
chngpts |
Vector of change points evaluated |
TT |
Standardized absolute score statistics |
V.S.hat |
Estimated variance-covariance matrix of the score statistics |
Author(s)
Zonglin He
References
He, Fong, Fouda, Permar. A non-nested hypothesis testing problem for threshold regression model, under review
Examples
dat=sim.hinge(threshold.type = 'NA',family = 'binomial',thres='NA',X.ditr = 'norm',mu.X = c(0,0,0),
coef.X = c(0,.5,.5,.4),cov.X = diag(3),eps.sd = 1,seed = 1,n=100)
test=hinge.test(Y~X1+X2, "x", family="binomial", data=dat,'method'='FDB',boot.B=10)
test