precip_indices {chirps} | R Documentation |
Compute precipitation indices over a time series.
Description
Compute precipitation indices over a time series.
Usage
precip_indices(object, timeseries = FALSE, intervals = NULL)
Arguments
object |
an object of class |
timeseries |
logical, |
intervals |
integer no lower than 5, for the days intervals when
timeseries = |
Value
A dataframe with precipitation indices:
MLDS |
maximum length of consecutive dry day, rain < 1 mm (days) |
MLWS |
maximum length of consecutive wet days, rain >= 1 mm (days) |
R10mm |
number of heavy precipitation days 10 >= rain < 20 mm (days) |
R20mm |
number of very heavy precipitation days rain >= 20 (days) |
Rx1day |
maximum 1-day precipitation (mm) |
Rx5day |
maximum 5-day precipitation (mm) |
R95p |
total precipitation when rain > 95th percentile (mm) |
R99p |
total precipitation when rain > 99th percentile (mm) |
Rtotal |
total precipitation (mm) in wet days, rain >= 1 (mm) |
SDII |
simple daily intensity index, total precipitation divided by the number of wet days (mm/days) |
References
Aguilar E., et al. (2005). Journal of Geophysical Research, 110(D23), D23107.
Kehel Z., et al. (2016). In: Applied Mathematics and Omics to Assess Crop Genetic Resources for Climate Change Adaptive Traits (eds Bari A., Damania A. B., Mackay M., Dayanandan S.), pp. 151–174. CRC Press.
Examples
lonlat <- data.frame(lon = c(-55.0281,-54.9857),
lat = c(-2.8094, -2.8756))
dates <- c("2017-12-15", "2017-12-31")
dt <- get_chirps(lonlat, dates, server = "ClimateSERV")
# take the indices for the entire period
precip_indices(dt, timeseries = FALSE)
# take the indices for periods of 7 days
precip_indices(dt, timeseries = TRUE, intervals = 7)