step_model {chillR} | R Documentation |
Calculation of cumulative temperature metric according to a user-defined stepwise weight function
Description
This function calculates heat for temperate trees according to a stepwise model provided by the user.
Usage
step_model(
HourTemp,
df = data.frame(lower = c(-1000, 1.4, 2.4, 9.1, 12.4, 15.9, 18), upper = c(1.4, 2.4,
9.1, 12.4, 15.9, 18, 1000), weight = c(0, 0.5, 1, 0.5, 0, -0.5, -1)),
summ = TRUE
)
Arguments
HourTemp |
Vector of hourly temperatures. |
df |
data.frame with three columns: lower, upper and weight. lower should contain the lower boundary of a chilling weight interval and upper should contain the upper boundary. weight indicates the weighting to be applied to the respective temperature interval. |
summ |
Boolean parameter indicating whether calculated metrics should be provided as cumulative values over the entire record (TRUE) or as the actual accumulation for each hour (FALSE). |
Details
Temperature-based metric calculated according to the user-defined model.
Value
Vector of length length(HourTemp) containing the cumulative temperature metric over the entire duration of HourTemp.
Author(s)
Eike Luedeling
Examples
weather<-fix_weather(KA_weather[which(KA_weather$Year>2006),])
stack<-stack_hourly_temps(weather,latitude=50.4)
df=data.frame(
lower=c(-1000,1,2,3,4,5,6),
upper=c(1,2,3,4,5,6,1000),
weight=c(0,1,2,3,2,1,0))
custom<-function(x) step_model(x,df)
custom(stack$Temp)
models<-list(Chilling_Hours=Chilling_Hours,Utah_Chill_Units=Utah_Model,
Chill_Portions=Dynamic_Model,GDH=GDH,custom=custom)
tempResponse(stack,Start_JDay = 305,End_JDay = 60,models)