tau3scen1 {chi2x3way} | R Documentation |
It provides the partition of the Marcotorchino's index and its related $C_M$-statistic under the Scenario 1 when probabilities are homogeneous.
tau3scen1(X, pi=rep(1/dim(X)[[1]],dim(X)[[1]]), pj=rep(1/dim(X)[[2]],dim(X)[[2]]), pk=rep(1/dim(X)[[3]],dim(X)[[3]]), digits = 3)
X |
The three-way contingency table. |
pi |
The input parameter for specifying the theoretical probabilities of rows categories. When |
pj |
The input parameter for specifying the theoretical probabilities of columns categories. When |
pk |
The input parameter for specifying the theoretical probabilities of tube categories. When |
digits |
The minimum number of decimal places, |
Description of the output returned
z |
The partition of the Marcotorchino's index, of the $C_M$-statistic and its revised formula, under Scenario 1. We get seven terms partitioning the Marcotorchino's index and the related $C_M$-statistic: three main terms, two bivariate terms and a trivariate term. The output is in a matrix, the six rows of this matrix indicate the tau index numerator, the tau index, the percentage of explained inertia, the $C_M$-statistic, the degree of freedom, the p-value, respectively. |
This function belongs to the class chi3class
.
Lombardo R and Takane Y
Beh EJ and Lombardo R (2014) Correspondence Analysis: Theory, Practice and New Strategies. John Wiley & Sons.
Lancaster H O (1951) Complex contingency tables treated by the partition of the chi-square. Journal of Royal Statistical Society, Series B, 13, 242-249.
Loisel S and Takane Y (2016) Partitions of Pearson's chi-square ststistic for frequency tables: A comprehensive account. Computational Statistics, 31, 1429-1452.
Lombardo R Carlier A D'Ambra L (1996) Nonsymmetric correspondence analysis for three-way contingency tables. Methodologica, 4, 59-80.
Marcotorchino F (1985) Utilisation des comparaisons par paires en statistique des contingencies: Partie III. Etude du Centre Scientifique, IBM, France. No F 081
data(olive) tau3scen1(olive)