chi3scen1 {chi2x3way} | R Documentation |
It provides the Pearson's index, e.g. chi-square index, partitioning under the Scenario 1 when probabilities are homogeneous.
chi3scen1(X, pi=rep(1/dim(X)[[1]],dim(X)[[1]]), pj=rep(1/dim(X)[[2]],dim(X)[[2]]), pk=rep(1/dim(X)[[3]],dim(X)[[3]]), digits = 3)
X |
The three-way contingency table. |
pi |
The input parameter for specifying the theoretical probabilities of rows categories.
When |
pj |
The input parameter for specifying the theoretical probabilities of columns categories.
When |
pk |
The input parameter for specifying the theoretical probabilities of tube categories.
When |
digits |
The minimum number of decimal places, |
Description of the output returned
z |
The chi-square index partition under Scenario 1, we get seven terms of the chi-square partition, three main terms, two bivariate terms and a trivariate term. The output is in a matrix, the four rows of this matrix indicate the index, the percentage of the explained inertia, the degree of freedom, the p-value, respectively. |
This function belongs to the class chi3class
.
Lombardo R and Takane Y
Beh EJ and Lombardo R (2014) Correspondence Analysis: Theory, Practice and New Strategies. John Wiley & Sons.
Carlier A Kroonenberg PM (1996) Biplots and decompositions in two-way and three-way correspondence analysis. Psychometrika, 61, 355-373.
Lancaster H O (1951) Complex contingency tables treated by the partition of the chi-square. Journal of Royal Statistical Society, Series B, 13, 242-249.
Loisel S and Takane Y (2016) Partitions of Pearson's chi-square ststistic for frequency tables: A comprehensive account. Computational Statistics, 31, 1429-1452.
##---- Should be DIRECTLY executable !! ---- data(olive) chi3scen1(olive)