invchi {chi} | R Documentation |
The Inverse Chi Distribution
Description
Density, distribution function, quantile function and random generation for the inverse chi distribution.
Usage
dinvchi(x, df, ncp = 0, log = FALSE)
pinvchi(q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qinvchi(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
rinvchi(n, df, ncp = 0)
Arguments
x , q |
vector of quantiles. |
df |
degrees of freedom (non-negative, but can be non-integer). |
ncp |
non-centrality parameter (non-negative). |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x] otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. If length(n) > 1, the length is taken to be the number required. |
See Also
Examples
s <- seq(0, 2, .01)
plot(s, dinvchi(s, 7), type = 'l')
f <- function(x) dinvchi(x, 7)
q <- .5
integrate(f, 0, q)
(p <- pinvchi(q, 7))
qinvchi(p, 7) # = q
mean(rinvchi(1e5, 7) <= q)
samples <- rinvchi(1e5, 7)
plot(density(samples))
curve(f, add = TRUE, col = "red")
[Package chi version 0.1 Index]