simu.change.regression {changepoints} | R Documentation |
Simulate a sparse regression model with change points in coefficients.
Description
Simulate a sparse regression model with change points in coefficients under temporal dependence.
Usage
simu.change.regression(
d0,
cpt_true,
p,
n,
sigma,
kappa,
cov_type = "I",
mod_X = "IID",
mod_e = "IID"
)
Arguments
d0 |
A |
cpt_true |
An |
p |
An |
n |
An |
sigma |
A |
kappa |
A |
cov_type |
A |
mod_X |
A |
mod_e |
A |
Value
A list
with the following structure:
cpt_true |
A vector of true changepoints (sorted in strictly increasing order). |
X |
An n-by-p design matrix. |
y |
An n-dim vector of response variable. |
betafullmat |
A p-by-n matrix of coefficients. |
Author(s)
Daren Wang, Zifeng Zhao & Haotian Xu
References
Rinaldo, Wang, Wen, Willett and Yu (2020) <arxiv:2010.10410>; Xu, Wang, Zhao and Yu (2022) <arXiv:2207.12453>.
Examples
d0 = 10
p = 30
n = 100
cpt_true = c(10, 30, 40, 70, 90)
data = simu.change.regression(d0, cpt_true, p, n, sigma = 1, kappa = 9)