simu.SEPP {changepoints} | R Documentation |
Simulate a (stable) SEPP model (without change point).
Description
Simulate a (stable) SEPP model (without change point).
Usage
simu.SEPP(intercept, n, A, threshold, vzero = NULL)
Arguments
intercept |
A |
n |
An |
A |
A |
threshold |
A |
vzero |
A |
Value
A p-by-n matrix.
Author(s)
Daren Wang & Haotian Xu
References
Wang, Yu, & Willett (2020). Detecting Abrupt Changes in High-Dimensional Self-Exciting Poisson Processes. <arXiv:2006.03572>.
Examples
p = 10 # dimension
n = 50
s = 5 # sparsity
factor = 0.12 # large factor gives exact recovery
threshold = 4 # thresholding makes the process stable
intercept = 1/2 # intercept of the model. Assume to be known as in the existing literature
A1 = A2 = A3 = matrix(0, p, p)
diag(A1[,-1]) = 1
diag(A1) = 1
diag(A1[-1,]) = -1
A1 = A1*factor
A1[(s+1):p, (s+1):p] = 0
diag(A2[,-1]) = 1
diag(A2) = -1
diag(A2[-1,]) = 1
A2 = A2*factor
A2[(s+1):p, (s+1):p] = 0
diag(A3[,-1]) = 1
diag(A3) = 1
diag(A3[-1,]) = -1
A3 = A3*factor
A3[(s+1):p, (s+1):p] = 0
data1 = simu.SEPP(intercept, n, A1, threshold, vzero = NULL)
data2 = simu.SEPP(intercept, n, A2, threshold, vzero = data1[,n])
data3 = simu.SEPP(intercept, n, A3, threshold, vzero = data2[,n])
data = cbind(data1, data2, data3)
dim(data)
[Package changepoints version 1.1.0 Index]