aARC {changepoints} | R Documentation |
Automatic adversarially robust univariate mean change point detection.
Description
Perform the adversarially robust change point detection method with automatic selection of the contamination proportion epsilon when treating the inliner distributions as Gaussian.
Usage
aARC(y, t_dat, guess_true = 0.05, h, block_num = 1)
Arguments
y |
A |
t_dat |
A |
guess_true |
A |
h |
An |
block_num |
An |
Value
An numeric
vector of estimated change point locations.
Author(s)
Mengchu Li
References
Li and Yu (2021) <arXiv:2105.10417>.
Examples
#' ### simulate data with contamination
obs_num = 1000
D = 2
noise = 0.1 # proportion of contamination
mu0 = 0
mu1 = 1
sd =1
idmixture = rbinom(obs_num/D, 1, 1-noise)
dat = NULL
for (j in 1:D){
for (i in 1:(obs_num/(2*D))){
if (idmixture[i] == 1){
dat = c(dat,rnorm(1,mu0,sd))
}
else{
dat = c(dat,rnorm(1,mu1/(2*noise),0))
}
}
for (i in (obs_num/(2*D)+1):(obs_num/D)){
if (idmixture[i] == 1){
dat = c(dat,rnorm(1,mu1,sd))
}
else{
dat = c(dat,rnorm(1,mu1/(2*noise)-(1-noise)*mu1/noise,0))
}
}
}
plot(dat)
### perform aARC
aARC(dat, dat[1:200], h = 120)
[Package changepoints version 1.1.0 Index]