CV.search.DP.LR.regression {changepoints} | R Documentation |
Grid search based on Cross-Validation of all tuning parameters (gamma, lambda and zeta) for regression.
Description
Perform grid search based on Cross-Validation of all tuning parameters (gamma, lambda and zeta)
Usage
CV.search.DP.LR.regression(
y,
X,
gamma_set,
lambda_set,
zeta_set,
delta,
eps = 0.001
)
Arguments
y |
A |
X |
A |
gamma_set |
A |
lambda_set |
A |
zeta_set |
A |
delta |
A strictly positive |
eps |
A |
Value
A list
with the following structure:
cpt_hat |
A list of vector of estimated changepoints (sorted in strictly increasing order) |
K_hat |
A list of scalar of number of estimated changepoints |
test_error |
A list of vector of testing errors (each row corresponding to each gamma, and each column corresponding to each lambda) |
train_error |
A list of vector of training errors |
Author(s)
Daren Wang & Haotian Xu
References
Rinaldo, Wang, Wen, Willett and Yu (2020) <arxiv:2010.10410>
Examples
set.seed(123)
d0 = 8
p = 15
n = 100
cpt_true = c(30, 70)
data = simu.change.regression(d0, cpt_true, p, n, sigma = 1, kappa = 9)
gamma_set = c(0.01, 0.1)
lambda_set = c(0.01, 0.1)
temp = CV.search.DP.regression(y = data$y, X = data$X, gamma_set, lambda_set, delta = 2)
temp$test_error # test error result
# find the indices of gamma_set and lambda_set which minimizes the test error
min_idx = as.vector(arrayInd(which.min(temp$test_error), dim(temp$test_error)))
gamma_set[min_idx[1]]
lambda_set[min_idx[2]]
cpt_init = unlist(temp$cpt_hat[min_idx[1], min_idx[2]])
zeta_set = c(0.1, 1)
temp_zeta = CV.search.DP.LR.regression(data$y, data$X, gamma_set[min_idx[1]],
lambda_set[min_idx[2]], zeta_set, delta = 2, eps = 0.001)
min_zeta_idx = which.min(unlist(temp_zeta$test_error))
cpt_LR = local.refine.regression(cpt_init, data$y, X = data$X, zeta = zeta_set[min_zeta_idx])
Hausdorff.dist(cpt_init, cpt_true)
Hausdorff.dist(cpt_LR, cpt_true)