CI.regression {changepoints} | R Documentation |
Confidence interval construction of change points for regression settings with change points.
Description
Construct element-wise confidence interval for change points.
Usage
CI.regression(
cpt_init,
cpt_LR,
beta_hat,
y,
X,
w = 0.9,
B = 1000,
M,
alpha_vec,
rounding = TRUE
)
Arguments
cpt_init |
An |
cpt_LR |
An |
beta_hat |
A |
y |
A |
X |
A |
w |
A |
B |
An |
M |
An |
alpha_vec |
An |
rounding |
A |
Value
An length(cpt_init)-2-length(alpha_vec) array of confidence intervals.
Author(s)
Haotian Xu
References
Xu, Wang, Zhao and Yu (2022) <arXiv:2207.12453>.
Xu, Wang, Zhao and Yu (2022) <arXiv:2207.12453>.
Examples
d0 = 5
p = 10
n = 200
cpt_true = c(70, 140)
data = simu.change.regression(d0, cpt_true, p, n, sigma = 1, kappa = 9)
lambda_set = c(0.1, 0.5, 1, 2)
zeta_set = c(10, 15, 20)
temp = CV.search.DPDU.regression(y = data$y, X = data$X, lambda_set, zeta_set)
temp$test_error # test error result
# find the indices of lambda_set and zeta_set which minimizes the test error
min_idx = as.vector(arrayInd(which.min(temp$test_error), dim(temp$test_error)))
lambda_set[min_idx[2]]
zeta_set[min_idx[1]]
cpt_init = unlist(temp$cpt_hat[min_idx[1], min_idx[2]])
beta_hat = matrix(unlist(temp$beta_hat[min_idx[1], min_idx[2]]), ncol = length(cpt_init)+1)
cpt_LR = local.refine.DPDU.regression(cpt_init, beta_hat, data$y, data$X, w = 0.9)
alpha_vec = c(0.01, 0.05, 0.1)
CI.regression(cpt_init, cpt_LR, beta_hat, data$y, data$X, w = 0.9, B = 1000, M = n, alpha_vec)