COforest {cgam} | R Documentation |
Colorado Forest Data Set
Description
This data set contains 9167 records of different species of live trees for 345 sampled forested plots measured in 2015.
Usage
data("COforest")
Format
A data frame with 9167 observations on the following 19 variables.
PLT_CN
Unique identifier of plot
STATECD
State code using Bureau of Census Federal Information Processing Standards (FIPS)
COUNTYCD
County code (FIPS)
ELEV_PUBLIC
Elevation (ft) extracted spatially using LON_PUBLIC/LAT_PUBLIC
LON_PUBLIC
Fuzzed longitude in decimal degrees using NAD83 datum
LAT_PUBLIC
Fuzzed latitude in decimal degrees using NAD83 datum
ASPECT
a numeric vector
SLOPE
a numeric vector
SUBP
Subplot number
TREE
Tree number within subplot
STATUSCD
Tree status (0:no status; 1:live tree; 2:dead tree; 3:removed)
SPCD
Species code
DIA
Current diameter (in)
HT
Total height (ft): estimated when broken or missing
ACTUALHT
Actual height (ft): measured standing or down
HTCD
Height method code (1:measured; 2:actual measured-length estimated; 3:actual and length estimated; 4:modeled
TREECLCD
Tree class code (2:growing-stock; 3:rough cull; 4:rotten cull)
CR
Compacted crown ratio (percentage)
CCLCD
Crown class (1:open grown; 2:domimant; 3:co-dominant; 4:intermediate; 5:overtopped)
Source
It is provided by Forest Inventory Analysis (FIA) National Program.
References
X. Liao and M. Meyer (2019). Estimation and Inference in Mixed-Effect Regression Models using Shape Constraints, with Application to Tree Height Estimation. (to appear in Journal of the Royal Statistical Society. Series C: Applied Statistics)
Examples
## Not run:
library(dplyr)
library(tidyr)
data(COforest)
#re-grouping classes of CCLCD:
#combine dominant (2) and co-dominant (3)
#combine intermediate (4) and overtopped (5)
COforest = COforest
mutate(CCLCD = replace(CCLCD, CCLCD == 5, 4))
#make a list of species, each element is a small data frame for one species
species = COforest
#get the subset for quaking aspen, which is the 4th element in the species list
sub = species$data[[4]]
#for quaking aspen, there are only two crown classes: dominant/co-dominant
#and intermediate/overtopped
table(sub$CCLCD)
# 3 4
#1400 217
#for quaking aspen, there are only two tree clases: growing-stock and rough cull
table(sub$TREECLCD)
#2 3
#1591 26
#fit the model
ansc = cgamm(log(HT)~s.incr.conc(DIA)+factor(CCLCD)+factor(TREECLCD)
+(1|PLT_CN), reml=TRUE, data=sub)
#check which classes are significant
summary(ansc)
#fixed-effect 95
newData = data.frame(DIA=sub$DIA,CCLCD=sub$CCLCD,TREECLCD=sub$TREECLCD)
pfit = predict(ansc, newData,interval='confidence')
lower = pfit$lower
upper = pfit$upper
#we need to use exp(muhat) later in the plot
muhat = pfit$fit
#get x and y
x = sub$DIA
y = sub$HT
#get TREECLCD and CCLCD
z1 = sub$TREECLCD
z2 = sub$CCLCD
#plot fixed-effect confidence intervals
plot(x, y, xlab='DIA (m)', ylab='HT (m)', ylim=c(min(y),max(exp(upper))+10),type='n')
lines(sort(x[z2==3&z1==2]), (exp(pfit$fit)[z2==3&z1==2])[order(x[z2==3&z1==2])],
col='slategrey', lty=1, lwd=2)
lines(sort(x[z2==3&z1==2]), (exp(pfit$lower)[z2==3&z1==2])[order(x[z2==3&z1==2])],
col='slategrey', lty=1, lwd=2)
lines(sort(x[z2==3&z1==2]), (exp(pfit$upper)[z2==3&z1==2])[order(x[z2==3&z1==2])],
col='slategrey', lty=1, lwd=2)
lines(sort(x[z2==4&z1==2]), (exp(pfit$fit)[z2==4&z1==2])[order(x[z2==4&z1==2])],
col="blueviolet", lty=2, lwd=2)
lines(sort(x[z2==4&z1==2]), (exp(pfit$lower)[z2==4&z1==2])[order(x[z2==4&z1==2])],
col="blueviolet", lty=2, lwd=2)
lines(sort(x[Cz2==4&z1==2]), (exp(pfit$upper)[Cz2==4&z1==2])[order(x[Cz2==4&z1==2])],
col="blueviolet", lty=2, lwd=2)
lines(sort(x[Cz2==3&z1==3]), (exp(pfit$fit)[Cz2==3&z1==3])[order(x[Cz2==3&z1==3])],
col=3, lty=3, lwd=2)
lines(sort(x[Cz2==3&z1==3]), (exp(pfit$lower)[Cz2==3&z1==3])[order(x[Cz2==3&z1==3])],
col=3, lty=3, lwd=2)
lines(sort(x[Cz2==3&z1==3]), (exp(pfit$upper)[Cz2==3&z1==3])[order(x[Cz2==3&z1==3])],
col=3, lty=3, lwd=2)
lines(sort(x[Cz2==4&z1==3]), (exp(pfit$fit)[Cz2==4&z1==3])[order(x[Cz2==4&z1==3])],
col=2, lty=4, lwd=2)
lines(sort(x[Cz2==4&z1==3]), (exp(pfit$lower)[Cz2==4&z1==3])[order(x[Cz2==4&z1==3])],
col=2, lty=4, lwd=2)
lines(sort(x[Cz2==4&z1==3]), (exp(pfit$upper)[Cz2==4&z1==3])[order(x[Cz2==4&z1==3])],
col=2, lty=4, lwd=2)
legend('bottomright', bty='n', cex=.9,c('dominant/co-dominant and growing stock',
'intermediate/overtopped and growing stock','dominant/co-dominant and rough cull',
'intermediate/overtopped and rough cull'), col=c('slategrey',"blueviolet",3,2),
lty=c(1,2,3,4),lwd=c(2,2,2,2), pch=c(24,23,22,21))
title('Quaking Aspen fits with 95
## End(Not run)