optimal.delta {cgAUC} | R Documentation |
optimal.delta
Description
Find the optimal delta.
Usage
optimal.delta(y, z, l, h, ind.d.l)
Arguments
y |
The potential variables. It is a matrix with column of values of a variables. It should be standardized in this application. |
z |
The gold standard variable. It should be standardized. |
l |
Linear combination. A vector. |
h |
The value of h falls into (n^(-1/2), n^(-1/5)). |
ind.d.l |
Void |
Value
delta.star |
Optimal delta. |
Author(s)
Yu-chia Chang
References
Chang, YCI. Maximizing an ROC type measure via linear combination of markers when the gold reference is continuous. Statistics in Medicine 2012.
Obuchowski NA. An ROC-type measure of diagnostic accuracy when the gold standard is continuous-scale. Statistics in Medicine 2006; 25:481–493.
Obuchowski N. Estimating and comparing diagnostic tests accuracy when the gold standard is not binary. Statistics in Medicine 2005; 20:3261–3278.
Friedman JH, Popescu BE. Gradient directed regularization for linear regression and classification. Technical Report, Department of Statistics, Stanford University, 2004.
Examples
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (y, z, l, h, ind.d.l)
{
l.i = matrix(rep(l, times = 50), nrow = 50, byrow = TRUE)
delta = seq(0, 5, length = 50)
m = delta %*% t(ind.d.l)
l.i = l.i + m
l.i.max = apply(l.i, 1, max)
l.i = l.i/l.i.max
theta = rep(0, 50)
for (i in 2:50) {
theta[i] = cntin(y, z, l.i[i, ], h)$theta.sh.h.p
}
delta.star = delta[which(theta == max(theta))]
return(delta.star)
}